805 research outputs found

    Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer.

    Get PDF
    Suppression of androgen receptor (AR) activity in prostate cancer by androgen depletion or direct AR antagonist treatment, although initially effective, leads to incurable castration-resistant prostate cancer (CRPC) via compensatory mechanisms including resurgence of AR and AR splice variant (ARV) signaling. Emerging evidence suggests that Sigma1 (also known as sigma-1 receptor) is a unique chaperone or scaffolding protein that contributes to cellular protein homeostasis. We reported previously that some Sigma1-selective small molecules can be used to pharmacologically modulate protein homeostasis pathways. We hypothesized that these Sigma1-mediated responses could be exploited to suppress AR protein levels and activity. Here we demonstrate that treatment with a small-molecule Sigma1 inhibitor prevented 5α- dihydrotestosterone-mediated nuclear translocation of AR and induced proteasomal degradation of AR and ARV, suppressing the transcriptional activity and protein levels of both full-length and splice-variant AR. Consistent with these data, RNAi knockdown of Sigma1 resulted in decreased AR levels and transcriptional activity. Furthermore, Sigma1 physically associated with ARV7 and A

    Remote real-time monitoring of subsurface landfill gas migration

    Get PDF
    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months

    Element release and reaction-induced porosity alteration during shale-hydraulic fracturing fluid interactions

    Get PDF
    The use of hydraulic fracturing techniques to extract oil and gas from low permeability shale reservoirs has increased significantly in recent years. During hydraulic fracturing, large volumes of water, often acidic and oxic, are injected into shale formations. This drives fluid-rock interaction that can release metal contaminants (e.g., U, Pb) and alter the permeability of the rock, impacting the transport and recovery of water, hydrocarbons, and contaminants. To identify the key geochemical processes that occur upon exposure of shales to hydraulic fracturing fluid, we investigated the chemical interaction of hydraulic fracturing fluids with a variety of shales of different mineralogical texture and composition. Batch reactor experiments revealed that the dissolution of both pyrite and carbonate minerals occurred rapidly, releasing metal contaminants and generating porosity. Oxidation of pyrite and aqueous Fe drove precipitation of Fe(III)-(oxy)hydroxides that attenuated the release of these contaminants via co-precipitation and/or adsorption. The precipitation of these (oxy)hydroxides appeared to limit the extent of pyrite reaction. Enhanced removal of metals and contaminants in reactors with higher fluid pH was inferred to reflect increased Fe-(oxy)hydroxide precipitation associated with more rapid aqueous Fe(II) oxidation. The precipitation of both Al- and Fe-bearing phases revealed the potential for the occlusion of pores and fracture apertures, whereas the selective dissolution of calcite generated porosity. These pore-scale alterations of shale texture and the cycling of contaminants indicate that chemical interactions between shales and hydraulic fracturing fluids may exert an important control on the efficiency of hydraulic fracturing operations and the quality of water recovered at the surface

    A Genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic as well as epigenetic alterations are a hallmark of both epithelial and haematological malignancies. High throughput screens are required to identify epigenetic markers that can be useful for diagnostic and prognostic purposes across malignancies.</p> <p>Results</p> <p>Here we report for the first time the use of the MIRA assay (methylated CpG island recovery assay) in combination with genome-wide CpG island arrays to identify epigenetic molecular markers in childhood acute lymphoblastic leukemia (ALL) on a genome-wide scale. We identified 30 genes demonstrating methylation frequencies of ≥25% in childhood ALL, nine genes showed significantly different methylation frequencies in B vs T-ALL. For majority of the genes expression could be restored in methylated leukemia lines after treatment with 5-azaDC. Forty-four percent of the genes represent targets of the polycomb complex. In chronic myeloid leukemia (CML) two of the genes, (<it>TFAP2A </it>and <it>EBF2)</it>, demonstrated increased methylation in blast crisis compared to chronic phase (P < 0.05). Furthermore hypermethylation of an autophagy related gene <it>ATG16L2 </it>was associated with poorer prognosis in terms of molecular response to Imatinib treatment. Lastly we demonstrated that ten of these genes were also frequently methylated in common epithelial cancers.</p> <p>Conclusion</p> <p>In summary we have identified a large number of genes showing frequent methylation in childhood ALL, methylation status of two of these genes is associated with advanced disease in CML and methylation status of another gene is associated with prognosis. In addition a subset of these genes may act as epigenetic markers across hematological malignancies as well as common epithelial cancers.</p

    Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations

    Full text link
    By reevaluating a 13-month stretch of Ulysses SWICS H pickup ion measurements near 5 AU close to the ecliptic right after the previous solar minimum, this paper presents a determination of the neutral interstellar H density at the solar wind termination shock and implications for the density and ionization degree of hydrogen in the LIC. The density of neutral interstellar hydrogen at the termination shock was determined from the local pickup ion production rate as obtained close to the cut-off in the distribution function at aphelion of Ulysses. As shown in an analytical treatment for the upwind axis and through kinetic modeling of the pickup ion production rate at the observer location, with variations in the ionization rate, radiation pressure, and the modeling of the particle behavior, this analysis turns out to be very robust against uncertainties in these parameters and the modeling. Analysis using current heliospheric parameters yields the H density at the termination shock equal to 0.087±0.0220.087\pm0.022 cm3^{-3}, including observational and modeling uncertainties.Comment: Re-edited version, density revised downward due to data re-processing, accepted by A&

    DANSR: A tool for the detection of annotated and novel small RNAs

    Get PDF
    Existing small noncoding RNA analysis tools are optimized for processing short sequencing reads (17-35 nucleotides) to monitor microRNA expression. However, these strategies under-represent many biologically relevant classes of small noncoding RNAs in the 36-200 nucleotides length range (tRNAs, snoRNAs, etc.). To address this, we developed DANSR, a tool for the detection of annotated and novel small RNAs using sequencing reads with variable lengths (ranging from 17-200 nt). While DANSR is broadly applicable to any small RNA dataset, we applied it to a cohort of matched normal, primary, and distant metastatic colorectal cancer specimens to demonstrate its ability to quantify annotated small RNAs, discover novel genes, and calculate differential expression. DANSR is available as an open source tool

    Do rare variant genotypes predict common variant genotypes?

    Get PDF
    The synthetic association hypothesis proposes that common genetic variants detectable in genome-wide association studies may reflect the net phenotypic effect of multiple rare polymorphisms distributed broadly within the focal gene rather than, as often assumed, the effect of common functional variants in high linkage disequilibrium with the focal marker. In a recent study, Dickson and colleagues demonstrated synthetic association in simulations and in two well-characterized, highly polymorphic human disease genes. The converse of this hypothesis is that rare variant genotypes must be correlated with common variant genotypes often enough to make the phenomenon of synthetic association possible. Here we used the exome genotype data provided for Genetic Analysis Workshop 17 to ask how often, how well, and under what conditions rare variant genotypes predict the genotypes of common variants within the same gene. We found nominal evidence of correlation between rare and common variants in 21-30% of cases examined for unrelated individuals; this rate increased to 38-44% for related individuals, underscoring the segregation that underlies synthetic association
    corecore