137 research outputs found

    Analyzing Power of the Proton Continuum for 150 and 200 MeV Polarized Protons on 12-C and 58,62-Ni

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    Effects of Pore Walls and Randomness on Phase Transitions in Porous Media

    Full text link
    We study spin models within the mean field approximation to elucidate the topology of the phase diagrams of systems modeling the liquid-vapor transition and the separation of He3^3--He4^4 mixtures in periodic porous media. These topologies are found to be identical to those of the corresponding random field and random anisotropy spin systems with a bimodal distribution of the randomness. Our results suggest that the presence of walls (periodic or otherwise) are a key factor determining the nature of the phase diagram in porous media.Comment: REVTeX, 11 eps figures, to appear in Phys. Rev.

    Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits

    Full text link
    Purpose: Tissue engineering techniques were used to study cartilage repair over a 12-month period in a rabbit model. Methods: A full-depth chondral defect along with subchondral bone injury were originated in the knee joint, where a biostable porous scaffold was implanted, synthesized of poly(ethyl acrylate-co-hydroxyethyl acrylate) copolymer. Morphological evolution of cartilage repair was studied 1 and 2 weeks, and 1, 3, and 12 months after implantation by histological techniques. The 3-month group was chosen to compare cartilage repair to an additional group where scaffolds were preseeded with allogeneic chondrocytes before implantation, and also to controls, who underwent the same surgery procedure, with no scaffold implantation. Results: Neotissue growth was first observed in the deepest scaffold pores 1 week after implantation, which spread thereafter; 3 months later scaffold pores were filled mostly with cartilaginous tissue in superficial and middle zones, and with bone tissue adjacent to subchondral bone. Simultaneously, native chondrocytes at the edges of the defect started to proliferate 1 week after implantation; within a month those edges had grown centripetally and seemed to embed the scaffold, and after 3 months, hyaline-like cartilage was observed on the condylar surface. Preseeded scaffolds slightly improved tissue growth, although the quality of repair tissue was similar to non-preseeded scaffolds. Controls showed that fibrous cartilage was mainly filling the repair area 3 months after surgery. In the 12-month group, articular cartilage resembled the untreated surface. Conclusions: Scaffolds guided cartilaginous tissue growth in vivo, suggesting their importance in stress transmission to the cells for cartilage repair.This study was supported by the Spanish Ministry of Science and Innovation through MAT2010-21611-C03-00 project (including the FEDER financial support), by Conselleria de Educacion (Generalitat Valenciana, Spain) PROMETEO/2011/084 grant, and by CIBER-BBN en Bioingenieria, Biomateriales y Nanomedicina. The work of JLGR was partially supported by funds from the Generalitat Valenciana, ACOMP/2012/075 project. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the - Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Sancho-Tello Valls, M.; Forriol, F.; Gastaldi, P.; Ruiz Sauri, A.; Martín De Llano, JJ.; Novella-Maestre, E.; Antolinos Turpín, CM.... (2015). Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits. International Journal of Artificial Organs. 38(4):210-223. https://doi.org/10.5301/ijao.5000404S210223384Becerra, J., Andrades, J. A., Guerado, E., Zamora-Navas, P., López-Puertas, J. M., & Reddi, A. H. (2010). Articular Cartilage: Structure and Regeneration. Tissue Engineering Part B: Reviews, 16(6), 617-627. doi:10.1089/ten.teb.2010.0191Nelson, L., Fairclough, J., & Archer, C. (2009). Use of stem cells in the biological repair of articular cartilage. Expert Opinion on Biological Therapy, 10(1), 43-55. doi:10.1517/14712590903321470MAINIL-VARLET, P., AIGNER, T., BRITTBERG, M., BULLOUGH, P., HOLLANDER, A., HUNZIKER, E., … STAUFFER, E. (2003). HISTOLOGICAL ASSESSMENT OF CARTILAGE REPAIR. The Journal of Bone and Joint Surgery-American Volume, 85, 45-57. doi:10.2106/00004623-200300002-00007Hunziker, E. B., Kapfinger, E., & Geiss, J. (2007). The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis and Cartilage, 15(4), 403-413. doi:10.1016/j.joca.2006.09.010Onyekwelu, I., Goldring, M. B., & Hidaka, C. (2009). Chondrogenesis, joint formation, and articular cartilage regeneration. Journal of Cellular Biochemistry, 107(3), 383-392. doi:10.1002/jcb.22149Ahmed, T. A. E., & Hincke, M. T. (2010). Strategies for Articular Cartilage Lesion Repair and Functional Restoration. Tissue Engineering Part B: Reviews, 16(3), 305-329. doi:10.1089/ten.teb.2009.0590Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04Steinwachs, M. R., Guggi, T., & Kreuz, P. C. (2008). Marrow stimulation techniques. Injury, 39(1), 26-31. doi:10.1016/j.injury.2008.01.042Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. New England Journal of Medicine, 331(14), 889-895. doi:10.1056/nejm199410063311401Richter, W. (2009). Mesenchymal stem cells and cartilagein situregeneration. Journal of Internal Medicine, 266(4), 390-405. doi:10.1111/j.1365-2796.2009.02153.xBartlett, W., Skinner, J. A., Gooding, C. R., Carrington, R. W. J., Flanagan, A. M., Briggs, T. W. R., & Bentley, G. (2005). Autologous chondrocyte implantationversusmatrix-induced autologous chondrocyte implantation for osteochondral defects of the knee. The Journal of Bone and Joint Surgery. British volume, 87-B(5), 640-645. doi:10.1302/0301-620x.87b5.15905Little, C. J., Bawolin, N. K., & Chen, X. (2011). Mechanical Properties of Natural Cartilage and Tissue-Engineered Constructs. Tissue Engineering Part B: Reviews, 17(4), 213-227. doi:10.1089/ten.teb.2010.0572Vikingsson, L., Gallego Ferrer, G., Gómez-Tejedor, J. A., & Gómez Ribelles, J. L. (2014). An «in vitro» experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 32, 125-131. doi:10.1016/j.jmbbm.2013.12.024Weber, J. F., & Waldman, S. D. (2014). Calcium signaling as a novel method to optimize the biosynthetic response of chondrocytes to dynamic mechanical loading. Biomechanics and Modeling in Mechanobiology, 13(6), 1387-1397. doi:10.1007/s10237-014-0580-xMauck, R. L., Soltz, M. A., Wang, C. C. B., Wong, D. D., Chao, P.-H. G., Valhmu, W. B., … Ateshian, G. A. (2000). Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels. Journal of Biomechanical Engineering, 122(3), 252-260. doi:10.1115/1.429656Palmoski, M. J., & Brandt, K. D. (1984). Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis & Rheumatism, 27(6), 675-681. doi:10.1002/art.1780270611Khoshgoftar, M., Ito, K., & van Donkelaar, C. C. (2014). The Influence of Cell-Matrix Attachment and Matrix Development on the Micromechanical Environment of the Chondrocyte in Tissue-Engineered Cartilage. Tissue Engineering Part A, 20(23-24), 3112-3121. doi:10.1089/ten.tea.2013.0676Agrawal, C. M., & Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, 55(2), 141-150. doi:10.1002/1097-4636(200105)55:23.0.co;2-jPérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030Horbett, T. A., & Schway, M. B. (1988). Correlations between mouse 3T3 cell spreading and serum fibronectin adsorption on glass and hydroxyethylmethacrylate-ethylmethacrylate copolymers. Journal of Biomedical Materials Research, 22(9), 763-793. doi:10.1002/jbm.820220903Kiremitçi, M., Peşmen, A., Pulat, M., & Gürhan, I. (1993). Relationship of Surface Characteristics to Cellular Attachment in PU and PHEMA. Journal of Biomaterials Applications, 7(3), 250-264. doi:10.1177/088532829300700304Lydon, M. ., Minett, T. ., & Tighe, B. . (1985). Cellular interactions with synthetic polymer surfaces in culture. Biomaterials, 6(6), 396-402. doi:10.1016/0142-9612(85)90100-0Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012Funayama, A., Niki, Y., Matsumoto, H., Maeno, S., Yatabe, T., Morioka, H., … Toyama, Y. (2008). Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. Journal of Orthopaedic Science, 13(3), 225-232. doi:10.1007/s00776-008-1220-zKitahara, S., Nakagawa, K., Sah, R. L., Wada, Y., Ogawa, T., Moriya, H., & Masuda, K. (2008). In Vivo Maturation of Scaffold-free Engineered Articular Cartilage on Hydroxyapatite. Tissue Engineering Part A, 14(11), 1905-1913. doi:10.1089/ten.tea.2006.0419Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448Wang, Y., Bian, Y.-Z., Wu, Q., & Chen, G.-Q. (2008). Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 29(19), 2858-2868. doi:10.1016/j.biomaterials.2008.03.021Alió del Barrio, J. L., Chiesa, M., Gallego Ferrer, G., Garagorri, N., Briz, N., Fernandez-Delgado, J., … De Miguel, M. P. (2014). Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Journal of Biomedical Materials Research Part A, 103(3), 1106-1118. doi:10.1002/jbm.a.35249Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7Serrano Aroca, A., Campillo Fernández, A. J., Gómez Ribelles, J. L., Monleón Pradas, M., Gallego Ferrer, G., & Pissis, P. (2004). Porous poly(2-hydroxyethyl acrylate) hydrogels prepared by radical polymerisation with methanol as diluent. Polymer, 45(26), 8949-8955. doi:10.1016/j.polymer.2004.10.033Diani, J., Fayolle, B., & Gilormini, P. (2009). A review on the Mullins effect. European Polymer Journal, 45(3), 601-612. doi:10.1016/j.eurpolymj.2008.11.017Mullins, L. (1969). Softening of Rubber by Deformation. Rubber Chemistry and Technology, 42(1), 339-362. doi:10.5254/1.3539210Jurvelin, J. S., Buschmann, M. D., & Hunziker, E. B. (2003). Mechanical anisotropy of the human knee articular cartilage in compression. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 217(3), 215-219. doi:10.1243/095441103765212712Shapiro, F., Koide, S., & Glimcher, M. J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. The Journal of Bone & Joint Surgery, 75(4), 532-553. doi:10.2106/00004623-199304000-00009SELLERS, R. S., ZHANG, R., GLASSON, S. S., KIM, H. D., PELUSO, D., D’AUGUSTA, D. A., … MORRIS, E. A. (2000). Repair of Articular Cartilage Defects One Year After Treatment with Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2)*. The Journal of Bone and Joint Surgery-American Volume, 82(2), 151-160. doi:10.2106/00004623-200002000-00001Hunziker, E. B., Michel, M., & Studer, D. (1997). Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microscopy Research and Technique, 37(4), 271-284. doi:10.1002/(sici)1097-0029(19970515)37:43.0.co;2-oAppelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2009). The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Biomaterials, 30(4), 518-525. doi:10.1016/j.biomaterials.2008.09.063Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60(2), 243-262. doi:10.1016/j.addr.2007.08.027HUNZIKER, E. B., & ROSENBERG, L. C. (1996). Repair of Partial-Thickness Defects in Articular Cartilage. The Journal of Bone & Joint Surgery, 78(5), 721-33. doi:10.2106/00004623-199605000-00012Schulze-Tanzil, G. (2009). Activation and dedifferentiation of chondrocytes: Implications in cartilage injury and repair. Annals of Anatomy - Anatomischer Anzeiger, 191(4), 325-338. doi:10.1016/j.aanat.2009.05.003Umlauf, D., Frank, S., Pap, T., & Bertrand, J. (2010). Cartilage biology, pathology, and repair. Cellular and Molecular Life Sciences, 67(24), 4197-4211. doi:10.1007/s00018-010-0498-0Karystinou, A., Dell’Accio, F., Kurth, T. B. A., Wackerhage, H., Khan, I. M., Archer, C. W., … De Bari, C. (2009). Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology, 48(9), 1057-1064. doi:10.1093/rheumatology/kep192Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis & Rheumatism, 52(8), 2521-2529. doi:10.1002/art.21212Schaefer, D., Martin, I., Jundt, G., Seidel, J., Heberer, M., Grodzinsky, A., … Freed, L. E. (2002). Tissue-engineered composites for the repair of large osteochondral defects. Arthritis & Rheumatism, 46(9), 2524-2534. doi:10.1002/art.1049

    Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    Get PDF
    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    Ideal Whitehead Graphs in Out(F r )

    No full text
    corecore