11 research outputs found

    Facile and Effective Synthesis of Praseodymium Tungstate Nanoparticles through an Optimized Procedure and Investigation of Photocatalytic Activity

    No full text
    Regarding the importance of nanoparticles in today’s world, and in the light of the fact that their preparation can be a rather difficult task, we focused on the applicability of a simplistic direct precipitation approach for the preparation of praseodymium tungstate nanoparticles. To maximize the effectiveness of the method, a Taguchi robust design approach was applied to optimize the reaction in terms of the operating conditions influencing its outcome and the results were monitored by characterization of the Pr2(WO4)3 nanoparticles. Among the four parameters studied we found the dimensions of the produced nanoparticles to be determined by the concentrations of Pr3+ and WO43− solutions and the reaction temperature, while the flow rate of adding the cation solutions to the anion solution was found to leave very negligible effects on the product characteristics. To confirm the effect of the optimizations on the outcomes of the reaction, SEM, TEM, EDX, XRD, FT-IR and UV-Vis structural and morphological characterizations of the products were performed, the results of which were in agreement with those statistically predicted in the optimization procedure. Furthermore, as-synthesized praseodymium tungstate nanoparticles under ultraviolet light exhibited an efficient photocatalyst property in the photocatalytic degradation of methylene blue

    Preparation and Characterization of Magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 Nanoparticles and Investigation of Their Photocatalytic and Anticancer Properties on PANC1 Cells

    No full text
    Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 magnetic nanoparticles were prepared at different molar ratios of PrVO4 to previous layers (Fe3O4/CdWO4) via the co-precipitation method assisted by a sonochemical procedure, in order to investigate the photocatalytic performance of these systems and their cytotoxicity properties. The physico-chemical properties of these magnetic nanoparticles were determined via several experimental methods: X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transformation infrared spectroscopy and ultraviolet-visible diffuse reflection spectroscopy, using a vibrating sample magnetometer and a scanning electron microscope. The average sizes of these nanoparticles were found to be in the range of 60–100 nm. The photocatalytic efficiency of the prepared nanostructures was measured by methylene blue degradation under visible light (assisted by H2O2). The magnetic nanosystem with a 1:2:1 ratio of three oxide components showed the best performance by the degradation of ca. 70% after 120 min of exposure to visible light irradiation. Afterwards, this sample was used for the photodegradation of methyl orange, methyl violet, fenitrothion, and rhodamine-B pollutants. Finally, the mechanism of the photocatalytic reaction was examined by releasing •OH under UV light in a system including terephthalic acid, as well as O2−, OH, and hole scavengers. Additionally, the cytotoxicity of each synthesized sample was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay against the human cell line PANC1 (cancer), and its IC50 was approximately 125 mg/L

    Green synthesis of silver nanoparticles using <i>Eucalyptus leucoxylon</i> leaves extract and evaluating the antioxidant activities of extract

    No full text
    <div><p>This study was designed to examine the <i>in vitro</i> antioxidant activity of essential oil and methanol extracts of <i>Eucalyptus leucoxylon</i>. Furthermore, the polar fraction of the extract was used as a reducing agent for the green synthesis of silver nanoparticles (Ag NPs). Antioxidant activities of the samples were determined by using three different test systems, namely DPPH and β-carotene/linoleic acid and reducing power. The structure and composition of the prepared Ag NPs were characterised by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV–vis spectroscopy. Synthesised Ag NPs were almost spherical in shape with an average diameter of about ∼ 50 nm and synthesised within 120 min reaction time at room temperature.</p></div

    Synthesis of Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 Nanoparticles: The Photocatalytic Effects on Organic Pollutants upon Irradiation with UV-Vis Light

    No full text
    Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 nanoparticles with different molar ratios of CeVO4 to other inorganic components were synthesized through co-precipitation with a sonochemical-assisted method. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, vibrating sample magnetometry, and scanning electron microscopy (SEM) methods were used for the physico&ndash;chemical characterization of the obtained nanoparticles. As shown in the SEM images, the average sizes of the Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 nanoparticles that formed aggregates were approximately 50&ndash;70 nm and 80&ndash;100 nm, respectively. The photocatalytic performance of these nanoparticles was examined by measuring methylene blue degradation under visible light (assisted by H2O2). The sample with a mass ratio of 1:2:1 (Fe3O4/ZnWO4/CeVO4, S4) exhibited optimal photocatalytic performance, and thus this sample was subsequently used for the photodegradation of different organic pollutants upon irradiation with ultraviolet (UV) and visible light. Approximately 90% and 70% degradation of methyl violet and methylene blue, respectively, was observed after visible light irradiation. Additionally, the mechanism of the photocatalytic reaction was investigated by measuring ˙OH release under UV light in a system with terephthalic acid and by measuring the release of ˙O2&minus;, ˙OH, and hole scavengers
    corecore