11 research outputs found

    Thin-walled composite tubes using fillers subjected to quasistatic axial compression

    Get PDF
    It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the "INSTRON Universal machine" which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens

    In Situ Pre-Treatment of Vascularized Composite Allografts With a Targeted Complement Inhibitor Protects Against Brain Death and Ischemia Reperfusion Induced Injuries

    Get PDF
    Introduction: Donor brain death (BD) is an unavoidable component of vascularized composite allograft (VCA) transplantation and a key contributor to ischemia-reperfusion injury (IRI). Complement is activated and deposited within solid organ grafts as a consequence of BD and has been shown to exacerbate IRI, although the role of BD and complement in VCA and the role it plays in IRI and VCA rejection has not been studied. Methods: BD was induced in Balb/c donors, and the VCA perfused prior to graft procurement with UW solution supplemented with or without CR2-Crry, a C3 convertase complement inhibitor that binds at sites of complement activation, such as that induced on the endothelium by induction of BD. Following perfusion, donor VCAs were cold stored for 6 hours before transplantation into C57BL/6 recipients. Donor VCAs from living donors (LD) were also procured and stored. Analyses included CR2-Crry graft binding, complement activation, toxicity, injury/inflammation, graft gene expression and survival. Results: Compared to LD VCAs, BD donor VCAs had exacerbated IRI and rejected earlier. Following pretransplant in-situ perfusion of the donor graft, CR2-Crry bound within the graft and was retained post-transplantation. CR2-Crry treatment significantly reduced complement deposition, inflammation and IRI as compared to vehicle-treated BD donors. Treatment of BD donor VCAs with CR2-Crry led to an injury profile not dissimilar to that seen in recipients of LD VCAs. Conclusion: Pre-coating a VCA with CR2-Crry in a clinically relevant treatment paradigm provides localized, and therefore minimally immunosuppressive, protection from the complement-mediated effects of BD induced exacerbated IRI

    Solar twins and siblings in spectroscopic archives

    No full text
    Solar twins are stars that replicate the solar astrophysical properties. They represent natural candidates for harboring planetary systems similar to ours. Solar siblings are stars which were born in the same cluster than the Sun. They may differ from the Sun by their mass and radius, but they have the same age, the same chemical composition, and similar spatial velocities. Solar twins and siblings may have formed in the same conditions as the Sun, and thus they may give some clues on where and how the Sun formed in our Galaxy. In this study, we search the closest solar twins among thousands of solar type stars observed at high spectral resolution over the full optical range. The spectra are directly compared to solar ones observed by reflection on asteroids or the Moon with the same instrument. This purely differential method, based on the reduced χ2, is independant of any model. We applied it to a selection of ˜17700 spectra of ˜3500 different stars from the ELODIE archive. The star HD 146233 (18 Sco) keeps its status of the closest solar twin. The second closest star is the known solar twin HD 138573. Some other stars among the top twenty best stars have never been studied before, like HD 168009, HD 056124, and HD 029150. Atmospheric parameters of the top twenty solar twins were determined with the iSpec code. Their effective temperatures and gravities are found to be within 100 K and 0.1 dex from those of the Sun, respectively. We find the metallicity of the twins to be higher by 0.05 dex on average than that of the Sun. We derived the chemical abundances for the 200 closest solar twins in a line by line differential basis relative to the Sun. The absorption lines used in this study come from a rigorous analysis of 670 lines measured in our 14 solar spectra. We find several stars with all abundances within 0.01 dex from those of the Sun. Several of them fall on the Yonsei-Yale theoritical isochrone of solar age and metallicity. Thus they could have been formed in the same cluster as the Sun

    Q-switched fiber laser employing a passive polarization-maintaining thulium-doped fiber as a saturable absorber

    No full text
    We present the application of polarization-maintaining thulium-doped fiber (PM-TDF) as a saturable absorber in an erbium-ytterbium-doped fiber laser. A commercial erbium-ytterbium-doped fiber amplifier (EYDFA) was employed in a ring cavity laser configuration with a sub-cavity that allowed bidirectional light propagation through PM-TDF. The Q-switched pulse operation was attained at 1563 nm with EYDFA output power of 720 – 980 mW. At maximum output power, the shortest pulse width of 1.4 µs was attained at 29.4 kHz repetition rate, with up to 41.7 mW of average output power and 1.44 µJ of pulse energy. The proposed fiber laser architecture demonstrated good stability in the time and frequency domains, thus recognizing its potential for applications that require high damage threshold saturable absorber devices
    corecore