38 research outputs found

    IL-12Rβ1 Deficiency in Two of Fifty Children with Severe Tuberculosis from Iran, Morocco, and Turkey

    Get PDF
    BACKGROUND AND OBJECTIVES: In the last decade, autosomal recessive IL-12Rβ1 deficiency has been diagnosed in four children with severe tuberculosis from three unrelated families from Morocco, Spain, and Turkey, providing proof-of-principle that tuberculosis in otherwise healthy children may result from single-gene inborn errors of immunity. We aimed to estimate the fraction of children developing severe tuberculosis due to IL-12Rβ1 deficiency in areas endemic for tuberculosis and where parental consanguinity is common. METHODS AND PRINCIPAL FINDINGS: We searched for IL12RB1 mutations in a series of 50 children from Iran, Morocco, and Turkey. All children had established severe pulmonary and/or disseminated tuberculosis requiring hospitalization and were otherwise normally resistant to weakly virulent BCG vaccines and environmental mycobacteria. In one child from Iran and another from Morocco, homozygosity for loss-of-function IL12RB1 alleles was documented, resulting in complete IL-12Rβ1 deficiency. Despite the small sample studied, our findings suggest that IL-12Rβ1 deficiency is not a very rare cause of pediatric tuberculosis in these countries, where it should be considered in selected children with severe disease. SIGNIFICANCE: This finding may have important medical implications, as recombinant IFN-γ is an effective treatment for mycobacterial infections in IL-12Rβ1-deficient patients. It also provides additional support for the view that severe tuberculosis in childhood may result from a collection of single-gene inborn errors of immunity

    Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    Full text link
    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity

    Consensus Middle East and North Africa Registry on Inborn Errors of Immunity

    Get PDF
    Background: Inborn errors of immunity (IEIs) are a heterogeneous group of genetic defects of immunity, which cause high rates of morbidity and mortality mainly among children due to infectious and non-infectious complications. The IEI burden has been critically underestimated in countries from middle- and low-income regions and the majority of patients with IEI in these regions lack a molecular diagnosis. Methods: We analyzed the clinical, immunologic, and genetic data of IEI patients from 22 countries in the Middle East and North Africa (MENA) region. The data was collected from national registries and diverse databases such as the Asian Pacific Society for Immunodeficiencies (APSID) registry, African Society for Immunodeficiencies (ASID) registry, Jeffrey Modell Foundation (JMF) registry, J Project centers, and International Consortium on Immune Deficiency (ICID) centers. Results: We identified 17,120 patients with IEI, among which females represented 39.4%. Parental consanguinity was present in 60.5% of cases and 27.3% of the patients were from families with a confirmed previous family history of IEI. The median age of patients at the onset of disease was 36 months and the median delay in diagnosis was 41 months. The rate of registered IEI patients ranges between 0.02 and 7.58 per 100,000 population, and the lowest rates were in countries with the highest rates of disability-adjusted life years (DALY) and death rates for children. Predominantly antibody deficiencies were the most frequent IEI entities diagnosed in 41.2% of the cohort. Among 5871 patients genetically evaluated, the diagnostic yield was 83% with the majority (65.2%) having autosomal recessive defects. The mortality rate was the highest in patients with non-syndromic combined immunodeficiency (51.7%, median age: 3.5 years) and particularly in patients with mutations in specific genes associated with this phenotype (RFXANK, RAG1, and IL2RG). Conclusions: This comprehensive registry highlights the importance of a detailed investigation of IEI patients in the MENA region. The high yield of genetic diagnosis of IEI in this region has important implications for prevention, prognosis, treatment, and resource allocation

    Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23

    Get PDF
    Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rß1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL- 12–dependent IFN-? immunity and IL-23–dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL- 12Rß2 or IL-23R deficiency, lacking responses to IL-12 or IL- 23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. We show that aß T, ?d T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-? in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-? in response to IL-23. We also show that the development of IFN-?–producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Last, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rß2 or IL-23R deficiency, relative to IL-12Rß1 deficiency, is, therefore, due to lower clinical penetrance. There are fewer symptomatic IL-23R– and IL-12Rß2–deficient than IL-12Rß1–deficient patients, not because these genetic disorders are rarer, but because the isolated absence of IL-12 or IL-23 is, in part, compensated by the other cytokine for the production of IFN-?, thereby providing some protection against mycobacteria. These experiments of nature show that human IL-12 and IL-23 are both required for optimal IFN-?–dependent immunity to mycobacteria, both individually and much more so cooperatively

    Improving the function of neutrophils from chronic granulomatous disease patients using mesenchymal stem cells� exosomes

    No full text
    In chronic granulomatous disease (CGD) patients, reactive oxygen species (ROS) production by neutrophils is impaired. So, they are susceptible to infections. Studies showed that, mesenchymal stem cells (MSCs) have protective effects on the function of neutrophils and an approach that MSCs use to apply their effects, is secreting soluble factors and exosomes. So, we investigated the effects of MSC-exosomes and MSC-conditioned media (MSC-CM) on the function and apoptosis of neutrophils in CGD patients. In this study, neutrophils were isolated from healthy donors and CGD patients and then incubated with exosomes or CM that were prepared from MSCs. Then, neutrophil respiratory burst, apoptosis and phagocytosis capacity were evaluated by NBT assay, Annexin V-PI method and Giemsa staining. It was demonstrated that both MSC-exosomes and CM could improve the phagocytosis capacity and ROS production of neutrophils in CGD patients and healthy donors. In contrast to the healthy group, in CGD patients, exosomes significantly reduced the percentage of viable neutrophils. This report indicated that MSC exosomes and CM could increase the function of the neutrophils isolated from CGD patients. But decreasing the number of the living cells is one of the limitations of them. However, it is hoped that this intervention will be developed in future studies to minimize its limitations. © 202
    corecore