65 research outputs found

    MIMO detection in analog VLSI

    Get PDF

    Artifact reduction in multichannel pervasive EEG using hybrid WPT-ICA and WPT-EMD signal decomposition techniques

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.In order to reduce the muscle artifacts in multi-channel pervasive Electroencephalogram (EEG) signals, we here propose and compare two hybrid algorithms by combining the concept of wavelet packet transform (WPT), empirical mode decomposition (EMD) and Independent Component Analysis (ICA). The signal cleaning performances of WPT-EMD and WPT-ICA algorithms have been compared using a signal-to-noise ratio (SNR)-like criterion for artifacts. The algorithms have been tested on multiple trials of four different artifact cases viz. eye-blinking and muscle artifacts including left and right hand movement and head-shaking.This work was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241

    A 64-Point Fourier Transform Chip for High-Speed Wireless LAN Application Using OFDM

    Full text link

    CORDIC Framework for Quaternion-based Joint Angle Computation to Classify Arm Movements

    Get PDF
    We present a novel architecture for arm movement classification based on kinematic properties (joint angle and position), computed from MARG sensors, using a quaternion-based gradient-descent method and a 2-link model of the upper limb. The design based on Coordinate Rotation Digital Computer framework was validated on stroke survivors and healthy subjects performing three elementary arm movements (reach and retrieve, lift arm, rotate arm), involved in `making-a-cup-of-tea' an archetypal daily activity, achieved an overall accuracy of 78% and 85% respectively. The design coded in System Verilog, was synthesized using STMicroelectronics 130 nm technology, occupies 340K NAND2 equivalent area and consumes 292 nW @ 150 Hz, besides being functionally verified up to 25 MHz making it suitable for real-time high speed operations. The orientation, arm position and the joint angle, are computed on-the-fly, with the classification performed at the end of movement duration

    CORDIC Framework for Quaternion-based Joint Angle Computation to Classify Arm Movements

    Get PDF
    We present a novel architecture for arm movement classification based on kinematic properties (joint angle and position), computed from MARG sensors, using a quaternion-based gradient-descent method and a 2-link model of the upper limb. The design based on Coordinate Rotation Digital Computer framework was validated on stroke survivors and healthy subjects performing three elementary arm movements (reach and retrieve, lift arm, rotate arm), involved in `making-a-cup-of-tea' an archetypal daily activity, achieved an overall accuracy of 78% and 85% respectively. The design coded in System Verilog, was synthesized using STMicroelectronics 130 nm technology, occupies 340K NAND2 equivalent area and consumes 292 nW @ 150 Hz, besides being functionally verified up to 25 MHz making it suitable for real-time high speed operations. The orientation, arm position and the joint angle, are computed on-the-fly, with the classification performed at the end of movement duration

    A statistical index for early diagnosis of ventricular arrhythmia from the trend analysis of ECG phase-portraits

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.In this paper, we propose a novel statistical index for the early diagnosis of ventricular arrhythmia (VA) using the time delay phase-space reconstruction (PSR) technique, from the electrocardiogram (ECG) signal. Patients with two classes of fatal VA-with preceding ventricular premature beats (VPBs) and with no VPBs-have been analysed using extensive simulations. Three subclasses of VA with VPBs viz. ventricular tachycardia (VT), ventricular fibrillation (VF) and VT followed by VF are analyzed using the proposed technique. Measures of descriptive statistics like mean (µ), standard deviation (σ), coefficient of variation (CV = σ/µ), skewness (γ) and kurtosis (β) in phase-space diagrams are studied for a sliding window of 10 beats of the ECG signal using the box-counting technique. Subsequently, a hybrid prediction index which is composed of a weighted sum of CV and kurtosis has been proposed for predicting the impending arrhythmia before its actual occurrence. The early diagnosis involves crossing the upper bound of a hybrid index which is capable of predicting an impending arrhythmia 356 ECG beats, on average (with 192 beats standard deviation) before its onset when tested with 32 VA patients (both with and without VPBs). The early diagnosis result is also verified using a leave one out cross-validation (LOOCV) scheme with 96.88% sensitivity, 100% specificity and 98.44% accuracy.This work was supported by the E.U. ARTEMIS Joint Undertaking under the Cyclic and person-centric Health management: Integrated appRoach for hOme, mobile and clinical eNvironments—(CHIRON) Project, Grant Agreement # 2009-1-100228

    Exploring strategies for classification of external stimuli using statistical features of the plant electrical response

    Get PDF
    This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this record.Plants sense their environment by producing electrical signals which in essence represent changes in underlying physiological processes. These electrical signals, when monitored, show both stochastic and deterministic dynamics. In this paper, we compute 11 statistical features from the raw non-stationary plant electrical signal time series to classify the stimulus applied (causing the electrical signal). By using different discriminant analysis-based classification techniques, we successfully establish that there is enough information in the raw electrical signal to classify the stimuli. In the process, we also propose two standard features which consistently give good classification results for three types of stimuli--sodium chloride (NaCl), sulfuric acid (H₂SO₄) and ozone (O₃). This may facilitate reduction in the complexity involved in computing all the features for online classification of similar external stimuli in future.The work reported in this paper was supported by project PLants Employed As SEnsor Devices (PLEASED), EC grant agreement number 296582

    Classification methodology of CVD with localized feature analysis using Phase Space Reconstruction targeting personalized remote health monitoring

    Get PDF
    2016 Computing in Cardiology Conference (CinC), 11-14 September 2016, Vancouver, BC, CanadaThis is the final version of the article. Available from the publisher via the DOI in this recordThis paper introduces the classification methodology of Cardiovascular Disease (CVD) with localized feature analysis using Phase Space Reconstruction (PSR) technique targeting personalized health care. The proposed classification methodology uses a few localized features (QRS interval and PR interval) of individual Electrocardiogram (ECG) beats from the Feature Extraction (FE) block and detects the desynchronization in the given intervals after applying the PSR technique. Considering the QRS interval, if any notch is present in the QRS complex, then the corresponding contour will appear and the variation in the box count indicating a notch in the QRS complex. Likewise, the contour and the disparity of box count due to the variation in the PR interval localized wave have been noticed using the proposed PSR technique. ECG database from the Physionet (MIT-BIH and PTBDB) has been used to verify the proposed analysis on localized features using proposed PSR and has enabled us to classify the various abnormalities like fragmented QRS complexes, myocardial infarction, ventricular arrhythmia and atrial fibrillation. The design have been successfully tested for diagnosing various disorders with 98% accuracy on all the specified abnormal databases.This work is partly supported by the Department of Electronics and Information and Technology (DeitY), India under the “Internet of Things (IoT) for Smarter Healthcare” under Grant No: 13(7)/2012-CC&BT, dated 25 Feb 2013. Naresh V is funded by Ministry of Human Resource Development (MHRD) PhD studentship through IIT Hyderabad

    Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this record.OBJECTIVE: The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. APPROACH: Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. MAIN RESULTS: The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. SIGNIFICANCE: The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.The work presented in this paper was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241. URL: www.michelangelo-project.eu/

    Forward and Inverse Modelling Approaches for Prediction of Light Stimulus from Electrophysiological Response in Plants

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.In this paper, system identification approach has been adopted to develop a novel dynamical model for describing the relationship between light as an environmental stimulus and the electrical response as the measured output for a bay leaf (Laurus nobilis) plant. More specifically, the target is to predict the characteristics of the input light stimulus (in terms of on-off timing, duration and intensity) from the measured electrical response - leading to an inverse problem. We explored two major classes of system estimators to develop dynamical models - linear and nonlinear - and their several variants for establishing a forward and also an inverse relationship between the light stimulus and plant electrical response. The best class of models are given by the Nonlinear Hammerstein-Wiener (NLHW) estimator showing good data fitting results over other linear and nonlinear estimators in a statistical sense. Consequently, a few set of models using different functional variants of NLHW has been developed and their accuracy in detecting the on-off timing and intensity of the input light stimulus are compared for 19 independent plant datasets (including 2 additional species viz. Zamioculcas zamiifolia and Cucumis sativus) under similar experimental scenario.The work reported in this paper was supported by project PLants Employed As SEnsor Devices (PLEASED), EC grant agreement number 296582
    corecore