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Abstract: 

Plants sense their environment by producing electrical signals which in essence represent 
changes in underlying physiological processes. These electrical signals, when monitored, 
show both stochastic and deterministic dynamics. In this paper, we compute 11 statistical 
features from the raw non-stationary plant electrical signal time series to classify the stimulus 
applied (causing the electrical signal). By using different discriminant analysis based 
classification techniques, we successfully establish that there is enough information in the 
raw electrical signal to classify the stimuli. In the process, we also propose two standard 
features which consistently give good classification results for three types of stimuli - Sodium 
Chloride (NaCl), Sulphuric Acid (H2SO4) and Ozone (O3). This may facilitate reduction in 
the complexity involved in computing all the features for online classification of similar 
external stimuli in future. 

Keywords: Plant electrical signal, classification, discriminant analysis, statistical feature, 
time series analysis 

1. Introduction 

Plants produce electrical signals, when subjected to various environmental stimuli [1–
7]. These electrical signals in essence represent changes in underlying physiological 
processes influenced by the external stimuli. Thus, analysing such plant electrical signals may 
uncover possible signatures of the external stimuli embedded within the signal. The stimuli 
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may vary from different light conditions, burning, cutting, wounding, gas or liquid [8] etc. 
This opens up the possibility to use such analysis techniques to turn a green plant into a 
multiple-stimuli sensing biological sensor device [9]. If such an association between the 
external stimuli and the resulting plant electrical signal could be made, then it may serve the 
purpose of holistic monitoring of environmental constituents at a much cheaper cost (because 
of abundance of plants) thereby eliminating the need to install multiple individual sensors to 
monitor the same external stimuli. In this work, we attempt to explore the possibility of 
classifying three external stimuli - Sodium Chloride (NaCl), Sulphuric Acid (H2SO4) and 
Ozone (O3), from the electrical signal response of plants as the first step towards that goal. 
Here, we chose heterogeneous stimuli that reproduce some of the possible environmental 
pollutants e.g. H2SO4 is a major component of acid rain. Ozone is a tropospheric air pollutant 
and is the main component of smog. Salinization often results from irrigation management 
practices or treatment of roads with salt as de-icing agent and can be linked to environmental 
soil pollution. These three stimuli – NaCl, H2SO4, O3 are specifically chosen to study the 
change in plant physiological response to represent the effect of environmental pollution. 

Electrical signals were collected from a number of tomato (Solanum lycopersicum) 
and cucumber (Cucumis sativus) plants using NaCl, H2SO4 and O3 as stimulus in controlled 
settings. Multiple experiments were conducted for each stimulus to ensure the repeatability of 
the electrical signal response each time. We then extracted 11 statistical features from these 
plant signal time series in order to investigate the possibility of accurate detection of external 
stimulus through a combination of these features and simple discriminant analysis classifiers. 
We believe this work will not only form the backbone of using plants as environmental 
biosensors [9], [10] but also open up a new field of further exploration in plant signal 
behaviours with meaningful feature extraction and classification similar to the studies done 
using other human body electrical responses like Electrocardiogram (ECG), 
Electroencephalogram (EEG) and Electromyogram (EMG) [11]. 

Although there have been few recent attempts on signal processing, feature extraction 
and statistical analysis using plant electrical responses [12–18], there has been no attempt to 
associate features extracted from plant electrical signals to different external stimuli. The 
focus of our work is to address this gap. Here, we analysed the statistical behaviour of raw 
electrical signals from plants similar to previous studies on raw non-stationary biological 
signals which exhibit random fluctuations such as EMG/EEG, adopting a similar approach to 
develop a classification system [19–22]. The present paper reports the first exploration of its 
kind, aiming at finding meaningful statistical feature(s) from segmented plant electrical 
signals which may contain some signature of the stimulus hidden in them, in different 
extents. 

As a first exploration, this work focussed on the ability to classify the stimuli by only 
looking at a small segment of raw plant electrical response. The questions which arise in 
order to explore this possibility of classification are: 1) which features give a good 
discrimination between the stimuli, and 2) which type of simple classifier will give a 
consistently good result. The simplicity of the classifier is important issue here because our 
ambition is to run it on resource constrained embedded systems, such as sensor nodes in 
future. In order to tackle the first question, we start by using 11 statistical features which have 
been used in other biological signals as well (e.g. EEG, ECG and EMG) [11]. We here 
explore which feature alone (univariate analysis) or feature combinations (bivariate analysis) 
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consistently indicate towards that particular signature of the stimulus. In order to answer the 
second question, we will start with a simple discriminant analysis classifier and then its other 
variants to observe the average classification rate. 

2. Material and methods   
(a) Stimulus and experimental details 

Here we try to develop a classification strategy to detect three different stimuli viz. O3, 
H2SO4, NaCl. Four set of experiments were conducted with H2SO4, NaCl 5ml and 10ml each 
as stimuli, as shown in Table 1. For each stimuli mentioned above, a between subjects design 
for experiments were setup where four different tomato plants (similar age, growing 
conditions and heights) were used with each plant being exposed to the stimulus only once. 
Thus for 12 experiments, 12 tomato plants were used. For Ozone as stimuli, six cucumber 
plants and two tomato plants were used for eight experiments with each plant being subjected 
to only one experiment but multiple application of the stimulus. 

Table 1: Different stimulus, plants species and number of data-points (each capturing 11 
statistical measures of 1000 samples) used for the present study 

 

For each plant, we used three stainless steel needle electrodes - one at the base 
(reference for background noise subtraction), one in the middle and the other on top of the 
stem as shown in Figure 1. The electrodes were 0.35 mm in diameter and 15 mm in length, 
similar to those used in EMG from Bionen S.A.S. and were inserted around 5 – 7 mm into the 
plant stem so that the sensitive active part of the electrodes (2mm) are in contact with the 
plant cells [8]. The electrodes were connected to the amplifier-Data Acquisition (DAQ) 
system in a same way previously studied in [8]. Plants were then enclosed in a plastic 
transparent box with proper openings to allow the presence of cables and inlet/outlet tubes, 
and exposed to artificial light conditions (LED lights responding to plant’s photosynthetic 
needs, mimicking a day/night cycle of 12 hours). Each experiment was conducted in a dark 
room to avoid external light interferences. The whole setup was then placed inside a Faraday 
cage to limit the effect of electromagnetic interference as shown in Figure 1. 

After the insertion of the electrodes into the plant, we waited for about 45 minutes to 
allow the plant(s) to recover before starting the stimulations. Electrical signals acquired by 
the electrodes were provided as input to a 2-channel high impedance (1015 

Ω) electrometer 
(DUO 773, WPI, USA) while data recording was carried out through 4-Channel DAQ 
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(LabTrax, WPI) and its dedicated software LabScribe (WPI) [23]. The sampling frequency 
was set as 10 samples per second for all the recordings. For the treatments with liquid, 
sulphuric acid (5 ml H2SO4, 0.05M) or sodium chloride (5 or 10 ml NaCl 3M), a syringe 
placed outside of the Faraday cage and connected to a silicone tube inserted into the plant 
soil, was used to inject the solution as shown in Figure 2(a). O3, produced by a commercial 
ozone generator (mod. STERIL, OZONIS, Italy), [24] was injected into the box through a 
silicone tube (1 minute spray every 2 hours, 16 ppm), while a second outlet tube threw the 
Ozone from the box to the chemical hood as shown in Figure 2(b). The concentration of 
Ozone inside the box was monitored using a suitable sensor. 

 

Figure 1: Experimental setup showing a tomato plant inside a plastic transparent box, kept 
inside a Faraday cage. The placement of the electrodes on the stem is also shown. 

 

Figure 2: Tubes system for introducing pollutants inside the box. (a) For the treatments with 
H2SO4 or NaCl, a syringe placed outside of the Faraday cage and connected to a silicone tube 
inserted into the plant soil was used to inject the solution at various concentrations. (b) Ozone 
was injected into the box through a silicone tube, while a second outlet tube threw the ozone 
from the box to the chemical hood. 

(b) Data processing and segmentation 
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Each dataset was obtained after one (H2SO4, NaCl 5 ml and 10 ml) or multiple (O3) 
application of that particular stimulus. This is illustrated in Figure 3 where the application of 
stimulus is marked by a vertical dotted line with the post stimulus part of the time series on 
the right side and the background or pre-stimulus part indicated on the left side of the line. In 
the case of O3, multiple application of the stimulus is shown by multiple markers. 

 

Figure 3: (Top) The vertical dotted lines mark the application time of the four stimuli. 
(Bottom) Separating the plant electrical signal into background and post-stimulus parts and 
then dividing them into smaller blocks of 1000 samples, as shown by dashed circles). 

 

As a general observation, from Figure 3 we can see that there are sudden spiking 
changes in the signal after the application of H2SO4 and Ozone as stimulus. However for the 
NaCl 5ml and 10 ml stimuli, the changes in the electrical signal response are relatively slow. 
Thereafter, for each experiment, we divided the data such that we have a post stimulus part of 
the signal as well as the background (pre-stimulus) part. In case of O3 where multiple stimuli 
were applied, we divided the data such that the signal duration between consecutive 
applications of the stimuli is a separate post-stimulus response. This way, we ended up having 
several post and pre-stimuli datasets for all the four stimuli. Next, each of these datasets was 
segmented into blocks of fixed window length of 1000 samples (100 seconds) which is 
shown in Figure 3.  
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The reason for this data segmentation is to facilitate batch processing of large 
volumes of data acquired during continuous monitoring. We extracted 11 statistical features 
from these small chunks of 1000 samples and wanted to explore if the features from such 
small chunks give enough information to the classifier to discriminate which stimulus that 
particular data chunk (time period) belonged to. Again, a successful classification of the 
stimulus from the features of such a small signal block will enable a fast decision time. This 
is due to smaller buffer-size for batch processing compared to the whole length of the signal 
acquisition thereby making it easier for possible online implementation in future. Since this is 
the first exploration of its kind, we stick to 1000 samples only, for extracting statistical 
features which give sufficiently good classification accuracy but there is scope for further 
exploration of an optimum window length to classify the stimulus. The classifier was trained 
using only the blocks of samples belonging to the post-stimulus part of the plant signal. The 
pre-stimulus part was also divided into similar segments in order to study the effect of the 
background for different plants under different experimental condition. 

The stimulus induced plant signals have both deterministic and random dynamics i.e. 
local and global variations in amplitudes and different statistical measures of smaller data 
segments [6], [9], [10], [25], [26]. The research question which we try to answer through the 
present exploration is – is it possible to identify the stimulus by only looking at the statistical 
behaviour of small segments of the plant electrical response? A successful answer to this 
question would pave the way of conceptualising an electronic sensor module in future for 
classifying the environmental stimulus. This sensor module can be fitted on the plant for 
batch processing of segmented plant signals, statistical feature extraction and classification, 
without much memory requirement in future applications. 

(c) Statistical feature extraction from segmented time series 

Here, we started with 11 features which are predominantly used in the analysis of 
other biological signals [27]. Different descriptive statistical features like mean (µ ), variance 

( 2σ ), skewness (γ ), kurtosis (β ) as given in (1) and Interquartile range ( 3 1IQR Q Q= − , i.e. 

the difference between the 1st and 3rd Quartile) were calculated. 

 [ ] [ ] ( ) ( )3 422, , ,i i i iE x E x E x E xµ σ µ γ µ σ β µ σ= = − = − = −         (1) 

In the calculation of four basic moments in (1), xi is the segmented raw electrical signals each 
of them containing 1000 samples and E[.] is the mathematical expectation operator. Apart 
from these five, the remaining six features taken are – Hjorth mobility, Hjorth complexity, 
detrended fluctuation analysis (DFA), Hurst exponent, wavelet packet entropy and average 
spectral power which are briefly described below. 

Hjorth’s parameters 

The Hjorth mobility and complexity, described in [28], quantify a signal from its 
mean slope and curvature by using the variances of the deflection of the curve and the 
variances of their first and second derivatives. Let the signal amplitudes at discrete time 
instants be na at time nt . The measures of the complexity of the signal is based on the second 

moments in time domain of the signal and the signal’s first and second derivatives. The finite 
differences of the signal or time derivatives can be viewed in (2). 
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1n n n nd a a a+′= = − , where ( )1,2, , 1n N= −⋯ and 

1n n n nd a a a+′ ′′ ′ ′= = − , where ( )1,2, , 2n N= −⋯       (2) 

The variances are then computed as (3) [29].  
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These variances (3) are used to calculate the Hjorth mobility ( Hm ) and the Hjorth complexity 

( Hc ) [29] as shown in (4). 

H d am σ σ= and ( ) ( )2 2 2 2
H dd d d ac σ σ σ σ= −        (4) 

Detrended fluctuation analysis (DFA) 

DFA has been introduced in identifying long range correlations in non-stationary time 
series data. By using a scaling exponent (α ), one can describe the significant autocorrelation 
properties of signals with a provision of capturing the non-stationary behaviour as well [30], 
[31]. The different values of α represents certain auto-correlation properties of the signal 
[30], [31]. For a value of less than 0.5, the signal is described as anti-correlated. A value of 
exactly 0.5 indicates uncorrelated (white noise) signal, whereas a value greater than 0.5 
indicates positive autocorrelation in the signal. When α =1, the signal is indicated to be 
1 f noise and a value of 1.5 indicates the signal to be random walk or Brownian noise [30], 

[31]. 

Hurst exponent 

The Hurst exponent (H ), a dimensionless estimator similar to DFA, is used as a 
measure of the long term memory of a time series data xi [32], [33]. The value of the Hurst 
exponent lies between 0 and 1, with a value between 0 – 0.5 indicating anti-persistent 
behaviour. This denotes that a decrease in the value of an element will be followed by an 
increase and vice versa. This characteristic is also known as mean reversion, which is 
explained as the tendency of future values to return to longer term mean value. The mean 
reversion phenomenon gets stronger for a series with exponent value closer to zero [32], [33]. 
When the value is close to 0.5, a random walk (e.g. a Brownian time series) is indicated. In 
such a time series, there is no correlation between any element and predictability of future 
elements is difficult [32], [33]. Lastly, when the value of the exponent is between 0.5 and 1, 
the time series exhibits persistent behaviour. This means the series has a trend or there is a 
significant autocorrelation in the signal. The more closer the exponent value gets towards 
unity, a stronger trend is indicated for the time series [32], [33]. 

Wavelet entropy (Wentropy) 

The time series may be represented in frequency and/or time-frequency domains by 
decomposing the signal in terms of basis functions such as harmonic functions (as in Fourier 
analysis) or wavelet basis functions (with consideration of non-stationary behaviour), 
respectively. Given such decomposition, it is possible to consider the distribution of the 
expansion coefficients in this basis. Quantification of the degree of variability of the signal 
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could be done using the entropy measure, where high values indicate less ordered 
distributions. The wavelet packet transform based entropy (WE) measures the degree of 
disorder (or order) in a signal [34–36]. A very ordered underlying process of a dynamical 
system may be visualized as a periodic single frequency signal (with a narrow band 
spectrum). Now the wavelet transformation of such a signal, will be resolved in one unique 
level with value nearing one, and all other relative wavelet energies being minimal (almost 
equal to zero) [34–36]. 

On the other hand, a disordered system represented by a random signal will portray 
significant wavelet energies from all frequency bands. The wavelet (Shannon) entropy gives 
an estimate of the measure of information of the probability distributions. This is calculated 
by converting the squared absolute values of the wavelet coefficients is  of the i th wavelet 

decomposition level as shown in (5). 

( )2 2logi i
i

WE s s= −∑           (5) 

Average spectral power 

The average spectral power (P ) is the measure of the variance of signal power, 
distributed across various frequencies [37]. It is given by the integral of the power spectral 

density (PSD) curve ( ) 2
jX e ω of the signal ( )x t  within a chosen frequency band of interest 

(bounded by the low and high frequency – ωl, ωh respectively) as shown in (6). 

 ( )
2

h

l

jP X e d
ω ω

ω
ω= ∫   (6) 

(d) Adopted classification scheme 

All of the above mentioned extracted features are first normalized to scale them 
within a maximum (1) and minimum (0) value and to avoid any unnecessary emphasis of 
some of the features on the classifier weights due to their larger magnitude than the others. 
Amongst all the 11 features, their relative importance in each of the binary classification set 
has been obtained by computing the Fisher’s Discriminant Ratio (FDR) [38]. The FDR is a 
measure to explore the discriminating power of a particular feature to separate two classes 

and are computed as( ) ( )2 2 2
1 2 1 2µ µ σ σ− + [38], where, 1µ and 2µ are the mean and1σ and 2σ  

are the standard deviation of the features in the two classes respectively and therefore should 
not be confused with that of the raw signal in (1). Higher ranking, based on FDR, will be 
assigned to those features which have higher difference in the mean values and small 
standard deviation implying compact distantly located clusters. Due to the application of 
multiple-stimulus, the FDR based feature ranking is applied for each of the stimulus pairs, in 
the present work [38].  

The classifiers implement algorithms which help in distinguishing between two or 
more different groups or classes of data. Different classification algorithms are obtained by 
first training the class labels (stimulus applied in this case) of a certain portion of the known 
(training) groups and then using the trained model to predict the class labels for a group of 
unknown (test) dataset. Once it is found that the testing phase is successful (high accuracy in 
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identifying the stimulus) using the trained model, the algorithm can be used to identify which 
class an unknown data belongs to. In cases, where the distinction is easily achievable, 
discriminant analysis classifiers such as Linear Discriminant Analysis (LDA) could be 
effective. Where such distinctions are not that straightforward, nonlinear classifiers such as 
kernel based techniques like support vector machine (SVM) can be applied. Cases where only 
two groups need to be identified, binary classification are generally carried out. This is a 
much simpler process than multiple class classification. The choice of a classifier 
(discriminant or complex kernelized SVM) may be determined sometimes by looking at the 
distribution plot of the features of the two groups. If the distribution plots show two well 
separated means, we can conclude that a simple linear or other discriminant analysis based 
classifiers should be able to classify the data to a sufficient extent. Unnecessarily involving a 
complex nonlinear classification technique often gives high classification accuracy on the 
training dataset, but is prone to over-fitting. In the present study we focus on five different 
discriminant analysis classifiers which are based on least square method for training the 
classifier weights compared to the computationally heavy optimization process involved in 
SVM. Amongst five discriminant analysis variants the QDA uses a quadratic kernel with the 
feature vectors. The Diaglinear and Diagquadratic classifiers are also known as Naïve Bayes 
classifier using a simple linear and quadratic kernel and use the diagonal estimate of the 
covariance matrix (neglecting the cross-terms or feature correlations). The Mahalanobis 
classifier uses a different distance measure than the standard Euclidean distance [38]. We 
used different discriminant analysis classifiers due to their simplicity to see the characteristic 
changes traced in the features due to these stimuli. Two types of approach could be taken in 
classification – 1) choice of meaningful statistical features followed by simple classifier, 2) 
simple features followed by a complex classifier. The former case is preferable in the present 
case since it may help in understanding the change in statistical behaviour of the signal which 
might be indicative towards some consistent modification of the underlying biological 
process.   

Cross validation schemes are often employed to avoid the introduction of any possible 
bias due to the training data-set [38]. Here we use the leave one out cross validation 
(LOOCV) where, if there are N data-points, then (N-1) number of samples is used for training 
the classifier and the one held-out sample is used to test the trained structure. Thereafter, the 
single test sample will be included in the next training set, and again a new sample from the 
previous training set will be set aside as the new test data. This loop will go for N times, till 
all the samples have been tested and the average classification accuracy for all the N 
instances are calculated [38]. 

3. Results 

The classification results of 5 discriminant analysis classifier variants, using 11 
statistical features from plant electrical signal response to four different stimuli viz. H2SO4, 
NaCl of 5 ml and 10 ml and O3 are presented in this section. We also investigate which 
stimuli are best detected by looking at the classification accuracy, thereby suggesting the 
ability of the plant to detect few particular stimuli better than the others.  

a) Need for subtracting the background information of individual features 

Figure 3, shows the four plant electrical signal responses to four different stimuli 
beginning at different amplitude levels. This means the background signal (even before the 
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application of the stimuli) is different in all four different cases. This may bias the final 
classification result due to the already separated background information within the multiple 
features considered. Due to the effect of different backgrounds, we can see a clear separation 
between the stimuli for some features such as Hjorth mobility, Hjorth complexity and 
skewness, in Figure 4, where histogram plots for each of the features for each stimulus are 
plotted without any background subtraction. 

 

Figure 4: Normalized histogram plots for 11 individual features showing stimuli separability 
(no background subtraction). 

 

Figure 5: Univariate histograms of each of the 11 features for four different stimuli (with 
background subtraction) 



Journal of the Royal Society Interface 

11 

 

This encourages us to look at only the incremental values of the features under 
different stimuli. The incremental values are obtained by subtracting the mean of every 
feature extracted from the background from the corresponding feature extracted from the 
post-stimulus part of the signal. The histogram plots of the incremental values of the 
individual features, after the background is subtracted, are given in Figure 5 which shows a 
lesser separability in the stimuli which were as expected. We now used these incremental 
values of the features to see how good they are in providing a successful classification (using 
five different discriminant analysis classifier variants) between any two stimuli (six binary 
combinations of four stimuli). As an example, although the histogram plots in Figure 5 shows 
clear separation of the distributions for NaCl and O3 using skewness as feature due to their 
peaky nature, the frequency of occurrence of the histograms show that the distributions have 
wider spread which has been reflected by the moderate rate of classification reported in the 
next subsections using that particular feature. 

b) Correlation of features to avoid redundancy 

Table 2: Correlation coefficient between 11 statistical features extracted from plant electrical 
signals (after subtracting the mean of the pre-stimulus features from the post-stimulus ones) 

 

Between all the features, a correlation test was carried out to find out their inter-
dependence. The result of this test, given in Table 2, is obtained by checking the Pearson 
correlation coefficient values between all feature pairs. A correlation value of (~ +1/-1) 
indicates a strong positive/negative correlation between a pair, whereas a value closer to zero 
indicates the feature pairs are independent and are thus more informative about the 
underlying process. A good classification strategy should ideally involve uncorrelated 
features, in order to avoid redundancy in training the classifier. In this work, we proceeded by 
initially taking all features into account and then ignored the ones with high correlation. 

c) Classification using univariate and bivariate features 
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The classification results were obtained in two ways – using univariate and bivariate 
features, to make the analysis intuitive and simple to infer. That is, instead of taking all the 
features together to get a multivariate classification (which may give good classification 
accuracy but are less intuitive and reliable due to increase in complexity and dimension of the 
problem), we just explored the results with 11 individual features and 55 possible feature 
pairs.  

Table 3 presents the results, obtained using individual features, averaged across all the 
six stimuli combinations and all the five different classifier variants. We have also presented 
the relative multi-class separability score given by the scatter matrix (S) in (7) for each 
feature in terms of the within-class (Sw) and between-class (Sb) scatter matrix [38]. 

 
( )

( )( )

1

0 0 0
1 1 1

, , , 1,2, ,

w b

c c c
T

w i i b i i i i i
i i i

S trace S S

S PS S P P i cµ µ µ µ µ µ

−

= = =

=

= = − − = =∑ ∑ ∑ ⋯

  (7) 

Here, Pi is the a-priori probability for the present four class problem ( 4c = ) and has been 
considered as ¼. Also, the mean and covariance matrices for each of the classes are denoted 

by { },i iSµ and the 0µ is the global mean vector. The scatter matrix extends the concept of 

class-separability using FDR from binary classification to multi-class problems. 

Table 3: Average accuracy (averaged across all six binary stimuli combinations and all five 
classifier variants) and best accuracy (averaged across four one vs. rest stimuli combinations) 
for classification using individual features 

 

The scatter matrices value in Table 3 provide an insight about how good the 
separation between all the four classes (stimuli) are using the individual features. From Table 
3 we can see that the signal ‘mean’ on its own has the best classification result for all the six 
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binary combinations of four stimuli. However since we have extracted the features from the 
raw non-stationary plant electrical signals, mean is not a very reliable feature to base any 
conclusions on, because it can be influenced by various artefacts and noise during 
measurement or from various environmental factors (e.g. sudden gust of breeze could shake 
the electrodes connected to the plant body etc.). The next five best features (best average 
accuracies given in Table 3), when taken individually, are wavelet packet entropy, Hjorth 
complexity, interquartile range, variance and average spectral power respectively. From now 
on, we will only consider these features as the top five features. In Table 3, we also report the 
best achievable accuracy along with the best classifier using each of the single features to 
discriminate the four stimulus within a ‘one vs. rest’ strategy. This highlights the possibility 
of isolating one particular class from the other classes using a single feature, with a certain 
degree of confidence. 

So far we have seen the averaged results of classification for six binary stimuli 
combinations using individual features. We next find the best classified stimuli combination 
using only the top five individual features and using the five variants of the discriminant 
analysis classifiers, as mentioned above. As a result, we obtained five classification 
accuracies (for five individual features) for every classifier for each of the six binary stimuli 
combination. That results in 25 classification accuracies for each of the six binary stimuli 
combinations. All these 25 results were averaged for each stimuli combination and given in 
Table 4 which shows the best discrimination possible is for H2SO4 and O3 with classification 
accuracy over 73%. Additionally, discrimination between NaCl (both concentrations) and 
O3/H2SO4 also shows promising result with accuracy over 65% and 63% respectively. 

Table 4: Accuracy using top five individual (univariate) features (F2 through F6) and averaged 
across five classifiers (average separability between different stimulus combinations) 

 

The average classification results presented in Table 4 encourages us to look at the 
best results achieved using individual features, for each stimuli combination, so that we can 
see if there is any consistent feature giving good classification results. This is shown in Table 
5 from where it is evident that F3 (Hjorth complexity) gives the best result for three different 
binary stimuli combinations with an accuracy over 74%. Overall, the best accuracy is 
achieved for classification between H2SO4 and O3, with an accuracy of >94% using F2 
(Wentropy) and QDA classifier. Although in Table 4 the discrimination between NaCl and 
O3/H2SO4 are shown in terms of the average accuracy which might seem to be relatively low 
(63% or 65%), the best cases for such a discrimination can be found in Table 5 (accuracies of 
>78% and >72% respectively) between the same set of stimuli. Also from Figure 5 we can 
see that though skewness shows a good discrimination between H2SO4 and other stimuli, 
from Table 3 we can see that the average classification accuracy using skewness as an 
individual feature is very low. This is due to the fact that skewness on its own did not give 
good classification results between other remaining stimuli combinations. 
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Table 5: Best accuracy taking individual features for each stimulus combinations (best 
separability between different stimulus combinations) 

 

d) Classification using feature pairs 

Table 6: Average accuracy obtained using top five feature pairs (bivariate) and five classifiers 
(average separability between different stimulus combinations) 

 

 

 

Figure 6: (top) Classification accuracy for different feature combinations with background 
information removed; (bottom) deterioration in accuracy for the features without background 
information removed.   
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Next, we looked at the effect of all possible feature pairs using 11 individual features 
(totalling 55 independent feature pairs) on the classification results between six different 
stimuli combinations. These classification accuracies are shown in Figure 6 along with the 
difference in accuracy (error) when the background is not subtracted as discussed in earlier 

section. The features mentioned as{ }1,2, ,11⋯ in Figure 6 are the features designated 

by{ }1 2 11, , ,f f f⋯  respectively in Table 2. Since we ignored mean as a feature in the previous 

section, we explored the effect of taking binary combinations of the next five individual 
features (F2 through F6, as mentioned in Table 3) on the classification accuracy. The results 
obtained using each of these bivariate features (pairs), using all the five classifier variants 
were averaged and given in Table 6 which are found to be better than the averaged results 
obtained using just univariate features as given in Table 4. 

 

Table 7: Best accuracy for each stimulus combination using two features (best separability 
between different stimulus combinations) 

 

By this exploration, we wanted to find out if there is any improvement on the 
classification accuracy when a feature pair is used rather than just individual feature. From 
Table 6, we can see that classification accuracy is improved for all stimuli combination 
except NaCl 5ml vs. H2SO4. We can also observe from Table 6 that the top two best 
accuracies are obtained for stimuli combinations of NaCl 10ml vs. O3 and H2SO4 vs. O3. 
Now, let us look at the best feature pair(s), among all 55 bivariate feature pairs, as given in 
Table 7. We notice that a combination of F4 (IQR) and F5 (variance) results in the best 
classification accuracies for four out of six different stimuli combinations. For the remaining 
two stimuli combinations, a feature pair of F4 and F6 (average spectral power) gives the best 
classification accuracies. 

e) Finding the most reliable combination of feature or feature pair and classifier 
variant 

So far we have found that individual features F2, F3, F8 and F9 and feature pairs F4-F5 
and F4-F6 produced the best classification results for one or more (out of the six) stimuli 
combinations. We now explore these features and feature pairs for all stimuli combinations. 
Table 8 gives the results of classification when we used just F2, F3, F8 and F9 as an individual 
feature using all classifier variants for all binary stimuli combinations. Similarly, Table 9 
gives the results using the feature pairs F4-F5 and F4-F6 for all the six stimuli combinations, 
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using all the five classifier variants. These results will help us choosing the right classifier 
and deciding the feature or feature-pair which provides the best average accuracy for all the 
binary combinations of stimuli.  

Table 8: Accuracy of different classifiers for six stimuli combinations (in %) using the best 
individual features 

 

From Table 8, we note that using just F2 or F3 provides consistently better average 
classification accuracies than using F8 or F9. It is also noticed that although F2 provides a 
better classification for the stimuli combinations NaCl 10ml vs. O3 and O3 vs. H2SO4, F3 
provides much consistent and better result for the remaining stimuli combinations. While 
considering a single feature for discriminating the four stimuli, the best average result (73%) 
could be obtained using the F2 (Wentropy) as feature and Mahalanobis classifier, although it 
is highly correlated with the signal mean (F1) as shown in Table 2. Since mean as a feature 
was ignored due to its susceptibility to artefacts, therefore, we also ignore Wentropy and 
instead propose Hjorth complexity as the best individual feature for achieving good average 
classification accuracy. 

�ng the individual features. From  REF _Ref386557847 m Table 9 that the top two 
classification accuracies (>73%) are obtained using F4-F5 combination and Diagquadratic and 
QDA as classifiers respectively. Both these top bivariate classification results (average 
accuracy of 69.65% across all stimuli and classifiers) are better than that obtained in 
univariate case in Table 8 (average accuracy of 62.98% across all stimuli and classifiers). 
Although again from Table 2, we realize the IQR and variance are highly correlated with each 
other but since we are achieving a good result in terms of classification using these two 
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features, we note that calculating IQR and variance from a block of 1000 samples of raw non-
stationary plant electrical signal, along with QDA or Diagquadratic classifier will provide 
consistently good results in terms of classifying which external stimuli caused the particular 
signature in the plant electrical signal. 

Table 9: Accuracy of different classifiers for six stimuli combinations (in %) using the best 
feature pairs 

 

We next explore some pairs of uncorrelated features for classification by looking at 
the 12 next best average classification accuracies (obtained across all stimuli combinations 
and using all five different classifiers) as shown through a 2D normalized histogram (volume 
being unity) plots showing the separation of the four stimuli in Figure 7. Average accuracy 
obtained (over all stimuli combinations and classifiers) using particular feature pairs (denoted 
by 1 2 11, , ,f f f⋯ , as described in Table 2) are also mentioned in the title of each subplot in 

Figure 7. It is observed that the second best average classification accuracy is achieved using 
variance and skewness as features which are almost uncorrelated (correlation of ~0.01 in 
Table 2). 

In Figure 7, except the first subplot with2 3f f− , all the rest combinations are almost 

uncorrelated and still give a good classification performance. Thus as a reliable measure of 
analysis, it has been found that the variance and skewness calculated from a block of 1000 
samples of plant electrical signal will be able to give an average (over all six stimuli 
combinations and using all five discriminant classifiers) accuracy of 70% during binary 
classification of the stimuli. It is to be noted that in the bivariate classification scheme, the 
mean (F1) has not been considered as one of the features. Also, the best bivariate accuracies 
were achieved involving the variance (F2) along with all the other features (F4…F11) in Figure 
7, while ignoring the F2-F3 combination due to their high inter-dependence. As a summary, a 
better reliable classification scheme is expected (~67%-70%) involving bivariate features as 
shown in Figure 7, with respect to the univariate features as given in Table 3 (<67%, ignoring 
mean and Wentropy). 



Journal of the Royal Society Interface 

18 

 

 

Figure 7: Bivariate histograms of top feature pairs with highest classification accuracy for all 
the four stimuli (accuracy mentioned in title of each subplot). 

The results presented in this work only takes into account the experimental data for 
individual stimulus under controlled environment (laboratory). The next step can be to setup 
experiments where multiple stimuli could be applied together on the plant and its electrical 
signal response could be extracted for further analysis and classification of the most 
influential stimuli. Also, the robustness of the statistical features due to possible artefact (e.g. 
movement of the leaf due to wind, rainfall etc.) are to be explored in future in a more 
naturalistic environment, outside the controlled laboratory set-up. 

4. Discussion 

In our exploration, the data from two channels per plant (per experiment) were used to 
record the electrical response, and then statistical features were calculated from both the 
channels and pooled together. Here, the location on the plant body for the data extraction was 
ignored, as the work was primarily focussed more on the possibility of classification of 
applied external stimuli from the extracted plant electrical signal. Similarly the effect of a 
different species of plants to study all the four stimuli have also been ignored, except the 
introduction of an additional species (cucumber) for Ozone stimulus. The idea behind 
developing an external stimuli classification scheme, based on plant electrical response is 
focussed on generic plant signal behaviour and not of a specific species. However such 
isolation forms a very good study and could be taken up as future scope of work. There might 
be some possibility of confounding effects based on the position of the electrodes and plant 
species in any classification scheme. But such confounding effects will be minimal due to the 
large number of data samples as shown in Table 1 and the use of cross-validation scheme to 
test the performance of the discriminant analysis classifiers. Also we did not use kernel based 
nonlinear classifiers like SVM which could over-fit these plant specific characteristics and 
still give good classification result, rendering the loss of generalizing capability of the 
classifier.  

Moreover, the present classification scheme is based on the raw non-stationary plant 
signal. In bio-signal processing literature [11], using of high-pass filter is recommended to 
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make a bio-signal stationary instead of extracting features from the raw non-stationary signal. 
But there is also a possibility with an ad-hoc filtering that some useful information in the data 
may get lost since the cut-off frequency for plant signal processing is not yet known. That is 
why we considered the features from the post-stimulus signal to train the classifier by 
removing any possible bias of the channel or plant using incremental features i.e. using the 
mean of the features in the pre-stimulus part. The segmentation of the signal in a block of 
1000 samples also disregards the temporal information of the stimuli, since we primarily tried 
to answer the question if classification is indeed possible by looking at any segment of the 
post-stimulus part of the signal. Also, in a realistic scenario, we would not know when the 
response to a particular stimulus started. So we need to base our classification on the in-
coming stream of live data. 

 
5.  Conclusion 

Our exploration using raw electrical signals from plants provides a platform for 
realizing a plant signal based bio-sensor to classify the environmental stimuli. The 
classification scheme was based on 11 statistical features extracted from segmented plant 
electrical signals, followed by feature ranking and rigorous univariate and bivariate feature 
based classification using five different discriminant analysis classifiers. External stimuli like 
H2SO4, O3 and NaCl in two different amounts (5 ml and 10 ml) have been classified using the 
adopted machine learning approach with 11 statistical features, capturing both the stationary 
and non-stationary behaviour of the signal. The classification has yielded a best average 
accuracy of 70% (across all stimuli and five classifier variants using variance and skewness 
as feature pairs) and the best individual accuracy of 73.67% (across all stimuli and using 
variance and IQR as feature pairs in Diagquadratic classifier). The very fact that, by looking 
at the statistical features of plant electrical response, we can successfully detect which stimuli 
caused the signal is quite promising. This will not only open the possibility of remotely 
monitoring the environment of a large geographical area, but will also help in taking timely 
preventive measures for natural or man-made disasters.  
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