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Abstract:

Plants sense their environment by producing etadtsignals which in essence represent
changes in underlying physiological processes. &ladsctrical signals, when monitored,
show both stochastic and deterministic dynamicsthla paper, we compute 11 statistical
features from the raw non-stationary plant eleatrsignal time series to classify the stimulus
applied (causing the electrical signal). By usindfecent discriminant analysis based
classification techniques, we successfully estalist there is enough information in the
raw electrical signal to classify the stimuli. Inet process, we also propose two standard
features which consistently give good classifiaatiesults for three types of stimuli - Sodium
Chloride (NaCl), Sulphuric Acid (}$Q:) and Ozone (€). This may facilitate reduction in
the complexity involved in computing all the feasirfor online classification of similar
external stimuli in future.

Keywords: Plant electrical signal, classification, discrimm analysis, statistical feature,
time series analysis

1. Introduction

Plants produce electrical signals, when subjeaadtious environmental stimuli [1—
7]. These electrical signals in essence represdanges in underlying physiological
processes influenced by the external stimuli. ThAng)ysing such plant electrical signals may
uncover possible signatures of the external stimoibedded within the signal. The stimuli
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may vary from different light conditions, burningytting, wounding, gas or liquid [8] etc.
This opens up the possibility to use such analiestiniques to turn a green plant into a
multiple-stimuli sensing biological sensor devid. [If such an association between the
external stimuli and the resulting plant electrisgnal could be made, then it may serve the
purpose of holistic monitoring of environmental sbtuents at a much cheaper cost (because
of abundance of plants) thereby eliminating thedneeinstall multiple individual sensors to
monitor the same external stimuli. In this work, atempt to explore the possibility of
classifying three external stimuli - Sodium Chl@ri¢NaCl), Sulphuric Acid (£6Qs) and
Ozone (Q), from the electrical signal response of plantshasfirst step towards that goal.
Here, we chose heterogeneous stimuli that reprodooge of the possible environmental
pollutants e.g. E5Os is a major component of acid rain. Ozone is adspperic air pollutant
and is the main component of smog. Salinizatioeroftesults from irrigation management
practices or treatment of roads with salt as dagieigent and can be linked to environmental
soil pollution. These three stimuli — NaCl$0:, Oz are specifically chosen to study the
change in plant physiological response to represeneffect of environmental pollution.

Electrical signals were collected from a numbetarhato Golanum lycopersicum
and cucumberQucumis sativysplants using NaCl, #$Q: and Q as stimulus in controlled
settings. Multiple experiments were conducted mhestimulus to ensure the repeatability of
the electrical signal response each time. We thxénacted 11 statistical features from these
plant signal time series in order to investigate plossibility of accurate detection of external
stimulus through a combination of these featuressample discriminant analysis classifiers.
We believe this work will not only form the backlmomf using plants as environmental
biosensors [9], [10] but also open up a new fieldfusther exploration in plant signal
behaviours with meaningful feature extraction atabsification similar to the studies done
using other human body electrical responses likeectEdcardiogram (ECG),
Electroencephalogram (EEG) and Electromyogram (EM®G]).

Although there have been few recent attempts amabigrocessing, feature extraction
and statistical analysis using plant electricapoeses [12—-18], there has been no attempt to
associate features extracted from plant electsgghals to different external stimuli. The
focus of our work is to address this gap. Here,awalysed the statistical behaviour of raw
electrical signals from plants similar to previostsidies on raw non-stationary biological
signals which exhibit random fluctuations such 83FEEG, adopting a similar approach to
develop a classification system [19-22]. The prepaper reports the first exploration of its
kind, aiming at finding meaningful statistical feet(s) from segmented plant electrical
signals which may contain some signature of thewdtis hidden in them, in different
extents.

As a first exploration, this work focussed on thdity to classify the stimuli by only
looking at a small segment of raw plant electricdponse. The questions which arise in
order to explore this possibility of classificaticare: 1) which features give a good
discrimination between the stimuli, and 2) whiclpayof simple classifier will give a
consistently good result. The simplicity of thesddier is important issue here because our
ambition is to run it on resource constrained erdbddsystems, such as sensor nodes in
future. In order to tackle the first question, warsby using 11 statistical features which have
been used in other biological signals as well (EBEG, ECG and EMG) [11]. We here
explore which feature alone (univariate analysrsjeature combinations (bivariate analysis)
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consistently indicate towards that particular stgre of the stimulus. In order to answer the
second question, we will start with a simple disgnant analysis classifier and then its other
variants to observe the average classification rate

2. Material and methods
(a) Stimulus and experimental details

Here we try to develop a classification strateggdtect three different stimuliz. Os,
H2SQs, NaCl. Four set of experiments were conducted #wi#B0s, NaCl 5ml and 10ml each
as stimuli, as shown in Table 1. For each stim@ntioned above, a between subjects design
for experiments were setup where four different donmplants (similar age, growing
conditions and heights) were used with each plaigbexposed to the stimulus only once.
Thus for 12 experiments, 12 tomato plants were .used Ozone as stimuli, six cucumber
plants and two tomato plants were used for eigheaments with each plant being subjected
to only one experiment but multiple applicatiorttod stimulus.

Table 1: Different stimulus, plants species and Imeimof data-points (each capturing 11
statistical measures of 1000 samples) used fqoréent study

Stimulus Plant species Concentration and Number of data-points
used application
Ozone (03) Tomato/Cucumber 16 ppm for a minute, 1881
every 2 hours
Sulphuric acid (H2SO.) Tomato S ml of H,SO4 0.05M 1n 496
the soil once
Sodium Chloride Tomato 5 ml of NaCl 3M in the 812
(NaCl) — 5ml soil once
Sodium Chloride Tomato 10 ml of NaCl 3M 1n the 612
(NaCl) — 10ml soil once

For each plant, we used three stainless steel eeddttrodes - one at the base
(reference for background noise subtraction), anthé middle and the other on top of the
stem as shown in Figure 1. The electrodes were id185n diameter and 15 mm in length,
similar to those used in EMG from Bionen S.A.S. amde inserted around 5 — 7 mm into the
plant stem so that the sensitive active part ofdleetrodes (2mm) are in contact with the
plant cells [8]. The electrodes were connectedh® amplifier-Data Acquisition (DAQ)
system in a same way previously studied in [8].nRlavere then enclosed in a plastic
transparent box with proper openings to allow thesence of cables and inlet/outlet tubes,
and exposed to artificial light conditions (LED Hig responding to plant’s photosynthetic
needs, mimicking a day/night cycle of 12 hours)clEaxperiment was conducted in a dark
room to avoid external light interferences. The lgteetup was then placed inside a Faraday
cage to limit the effect of electromagnetic integfece as shown in Figure 1.

After the insertion of the electrodes into the plave waited for about 45 minutes to
allow the plant(s) to recover before starting thiglations. Electrical signals acquired by
the electrodes were provided as input to a 2-cHdnigh impedance (20Q) electrometer
(DUO 773, WPI, USA) while data recording was catrieut through 4-Channel DAQ

3



Journal of the Royal Society Interface

(LabTrax, WPI) and its dedicated software LabSc(¥&°1) [23]. The sampling frequency
was set as 10 samples per second for all the regstdFor the treatments with liquid,
sulphuric acid (5 ml EBQy, 0.05M) or sodium chloride (5 or 10 ml NaCl 3M)swinge
placed outside of the Faraday cage and connectadsiticone tube inserted into the plant
soil, was used to inject the solution as shownigufe 2(a). G, produced by a commercial
ozone generator (mod. STERIL, OZONIS, Italy), [24ds injected into the box through a
silicone tube (1 minute spray every 2 hours, 16 ppwnhile a second outlet tube threw the
Ozone from the box to the chemical hood as showRigure 2(b). The concentration of
Ozone inside the box was monitored using a suitsdasor.

LED light for aiding
photosynthesis

Outlet for Ozone / \ Inlet for Ozone as
as stimulus \ stimulus

Faraday cage | Electrodes into the
plant stem

Figure 1. Experimental setup showing a tomato piaside a plastic transparent box, kept
inside a Faraday cage. The placement of the etixdron the stem is also shown.
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Figure 2: Tubes system for introducing pollutamiside the box. (a) For the treatments with
H2SOQw or NaCl, a syringe placed outside of the Faradame@nd connected to a silicone tube
inserted into the plant soil was used to injectdbleition at various concentrations. (b) Ozone
was injected into the box through a silicone tukleile a second outlet tube threw the ozone
from the box to the chemical hood.

(b) Data processing and segmentation
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Each dataset was obtained after oneS@®, NaCl 5 ml and 10 ml) or multiple gD
application of that particular stimulus. This isigtrated in Figure 3 where the application of
stimulus is marked by a vertical dotted line witle fpost stimulus part of the time series on
the right side and the background or pre-stimulrs ipdicated on the left side of the line. In
the case of & multiple application of the stimulus is shownryltiple markers.
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Figure 3: (Top) The vertical dotted lines mark theplication time of the four stimuli.
(Bottom) Separating the plant electrical signabibackground and post-stimulus parts and
then dividing them into smaller blocks of 1000 séespas shown by dashed circles).

As a general observation, from Figure 3 we cantbatthere are sudden spiking
changes in the signal after the application e&@& and Ozone as stimulus. However for the
NaCl 5ml and 10 ml stimuli, the changes in the teieal signal response are relatively slow.
Thereatfter, for each experiment, we divided the dath that we have a post stimulus part of
the signal as well as the background (pre-stimybas). In case of ©where multiple stimuli
were applied, we divided the data such that thenadigluration between consecutive
applications of the stimuli is a separate post-siirs response. This way, we ended up having
several post and pre-stimuli datasets for all the Btimuli. Next, each of these datasets was

segmented into blocks of fixed window length of @0§amples (100 seconds) which is
shown in Figure 3.
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The reason for this data segmentation is to fatdlitbatch processing of large
volumes of data acquired during continuous momgpriVe extracted 11 statistical features
from these small chunks of 1000 samples and watatexkplore if the features from such
small chunks give enough information to the classifo discriminate which stimulus that
particular data chunk (time period) belonged toaihg a successful classification of the
stimulus from the features of such a small sighatbwill enable a fast decision time. This
is due to smaller buffer-size for batch processiogpared to the whole length of the signal
acquisition thereby making it easier for possibiére implementation in future. Since this is
the first exploration of its kind, we stick to 10@amples only, for extracting statistical
features which give sufficiently good classificatiaccuracy but there is scope for further
exploration of an optimum window length to clasdifie stimulus. The classifier was trained
using only the blocks of samples belonging to tbststimulus part of the plant signal. The
pre-stimulus part was also divided into similar eegts in order to study the effect of the
background for different plants under different esmental condition.

The stimulus induced plant signals have both detestic and random dynamics i.e.
local and global variations in amplitudes and défe statistical measures of smaller data
segments [6], [9], [10], [25], [26]. The researalegtion which we try to answer through the
present exploration is — is it possible to identifg stimulus by only looking at the statistical
behaviour of small segments of the plant electrreabonse? A successful answer to this
guestion would pave the way of conceptualising kaetenic sensor module in future for
classifying the environmental stimulus. This sensmdule can be fitted on the plant for
batch processing of segmented plant signals, titatiseature extraction and classification,
without much memory requirement in future applicas.

(c) Statistical feature extraction from segmented tireeries

Here, we started with 11 features which are predantly used in the analysis of
other biological signals [27]. Different descrigigtatistical features like meap }, variance

(0?), skewness ), kurtosis (3) as given in (1) and Interquartile rangQR=Q - Q, i.e.
the difference between thé& and ¥ Quartile) were calculated.

u=E[x].0* = E[x-u|" y= E(x-u)fo] .B= E( x-p)/o] 1)

In the calculation of four basic moments in (4)s the segmented raw electrical signals each
of them containing 1000 samples aBd] is the mathematical expectation operator. Apart
from these five, the remaining six features takem-aHjorth mobility, Hjorth complexity,
detrended fluctuation analysis (DFA), Hurst expdnevavelet packet entropy and average
spectral power which are briefly described below.

Hjorth's parameters

The Hjorth mobility and complexity, described in8]2 quantify a signal from its
mean slope and curvature by using the variancetheofdeflection of the curve and the
variances of their first and second derivativest tbe signal amplitudes at discrete time
instants bea, at timet, . The measures of the complexity of the signakisell on the second

moments in time domain of the signal and the sigri@st and second derivatives. The finite
differences of the signal or time derivatives carviewed in (2).
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d,=a =a, -~ a, wheren=1,2;-- (N-Jand

=d,,~ &, wheren=1,2,-- (N- 2 (2)
The variances are then computed as (3) [29].
2 1 N 1 N-1 2 5 1 N-2 2
— —F> (d —-d , d,—d_ 3
a NZ; (N 1);( n n—1) Udd (N 2)n1( ) ( )

These variances (3) are used to calculate thelHjpability (m, ) and the Hjorth complexity
(c,) [29] as shown in (4).

m, =,/0,andc, =,[(0% /%) ~(0%/0?) (4)
Detrended fluctuation analysis (DFA)

DFA has been introduced in identifying long rangerelations in non-stationary time
series data. By using a scaling exponenj,(one can describe the significant autocorrelation
properties of signals with a provision of capturthg non-stationary behaviour as well [30],
[31]. The different values otr represents certain auto-correlation propertieshef gignal
[30], [31]. For a value of less than 0.5, the sigaalescribed as anti-correlated. A value of
exactly 0.5 indicates uncorrelated (white noisgnal, whereas a value greater than 0.5
indicates positive autocorrelation in the signalhai a =1, the signal is indicated to be
1/ f noise and a value of 1.5 indicates the signal teabdom walk or Brownian noise [30],

[31].
Hurst exponent

The Hurst exponentH ), a dimensionless estimator similar to DFA, isduss a
measure of the long term memory of a time sedesx [32], [33]. The value of the Hurst
exponent lies between 0 and 1, with a value betw@&en 0.5 indicating anti-persistent
behaviour. This denotes that a decrease in the \dla® element will be followed by an
increase and vice versa. This characteristic is &fsmwvn as mean reversiomhich is
explained as the tendency of future values to metarlonger term mean value. The mean
reversion phenomenon gets stronger for a seridsaxfponent value closer to zero [32], [33].
When the value is close to 0.5, a random walk @.Brownian time series) is indicated. In
such a time series, there is no correlation betvaagnelement and predictability of future
elements is difficult [32], [33]. Lastly, when thalue of the exponent is between 0.5 and 1,
the time series exhibits persistent behaviour. Tiesins the series has a trend or there is a
significant autocorrelation in the signal. The mateser the exponent value gets towards
unity, a stronger trend is indicated for the tireges [32], [33].

Wavelet entropy (Wentropy)

The time series may be represented in frequencyatidie-frequency domains by
decomposing the signal in terms of basis functguth as harmonic functions (as in Fourier
analysis) or wavelet basis functions (with consatien of non-stationary behaviour),
respectively. Given such decomposition, it is palssito consider the distribution of the
expansion coefficients in this basis. Quantificataf the degree of variability of the signal
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could be done using the entropy measure, where kmhes indicate less ordered
distributions. The wavelet packet transform basetfopy (WE) measures the degree of
disorder (or order) in a signal [34-36]. A very eredd underlying process of a dynamical
system may be visualized as a periodic single #aqu signal (with a narrow band

spectrum). Now the wavelet transformation of sudigaal, will be resolved in one unique

level with value nearing one, and all other reklatwavelet energies being minimal (almost
equal to zero) [34-36].

On the other hand, a disordered system represéygtedrandom signal will portray
significant wavelet energies from all frequency d&nThe wavelet (Shannon) entropy gives
an estimate of the measure of information of th@bability distributions. This is calculated
by converting the squared absolute values of theelea coefficientss of thei™ wavelet

decomposition level as shown in (5).
WE = —Z $ Iog( é) (5)

Average spectral power

The average spectral poweI_DI is the measure of the variance of signal power,
distributed across various frequencies [37]. lgiigen by the integral of the power spectral

density (PSD) cur\,{e( (ei“’)‘zof the signalx(t) within a chosen frequency band of interest

(bounded by the low and high frequencyi-wnh respectively) as shown in (6).
= o o 2
P—J‘W‘X(e' )\ dw (6)

(d) Adopted classification scheme

All of the above mentioned extracted features @ fhiormalized to scale them
within a maximum (1) and minimum (0) value and twid any unnecessary emphasis of
some of the features on the classifier weights tduileir larger magnitude than the others.
Amongst all the 11 features, their relative impoc& in each of the binary classification set
has been obtained by computing the Fisher’s Disnant Ratio (FDR) [38]. The FDR is a
measure to explore the discriminating power of di@dar feature to separate two classes

and are computed §8, - 14,)° / (0’12+0'22)[38], where/, andy, are the mean amg ando,

are the standard deviation of the features inwtedasses respectively and therefore should
not be confused with that of the raw signal in f@igher ranking, based on FDR, will be
assigned to those features which have higher diffsz in the mean values and small
standard deviation implying compact distantly lechtlusters. Due to the application of
multiple-stimulus, the FDR based feature rankinggplied for each of the stimulus pairs, in
the present work [38].

The classifiers implement algorithms which helpdistinguishing between two or
more different groups or classes of data. Differdassification algorithms are obtained by
first training the class labels (stimulus appliadhis case) of a certain portion of the known
(training) groups and then using the trained madedredict the class labels for a group of
unknown (test) dataset. Once it is found that &s¢inng phase is successful (high accuracy in
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identifying the stimulus) using the trained modkeg algorithm can be used to identify which
class an unknown data belongs to. In cases, wheredistinction is easily achievable,
discriminant analysis classifiers such as LineascBininant Analysis (LDA) could be
effective. Where such distinctions are not thaigtitforward, nonlinear classifiers such as
kernel based techniques like support vector maql8@1) can be applied. Cases where only
two groups need to be identified, binary classifara are generally carried out. This is a
much simpler process than multiple class classifina The choice of a classifier
(discriminant or complex kernelized SVM) may beeadetined sometimes by looking at the
distribution plot of the features of the two groupfsthe distribution plots show two well
separated means, we can conclude that a simpl loreother discriminant analysis based
classifiers should be able to classify the data suoifficient extent. Unnecessarily involving a
complex nonlinear classification technique ofteregi high classification accuracy on the
training dataset, but is prone to over-fitting.the present study we focus on five different
discriminant analysis classifiers which are basaedleast square method for training the
classifier weights compared to the computationbiyavy optimization process involved in
SVM. Amongst five discriminant analysis variante QDA uses a quadratic kernel with the
feature vectors. ThBiaglinear andDiagquadraticclassifiers are also known as Naive Bayes
classifier using a simple linear and quadratic &kmend use the diagonal estimate of the
covariance matrix (neglecting the cross-terms @tuiee correlations). Th&lahalanobis
classifier uses a different distance measure thanstandard Euclidean distance [38]. We
used different discriminant analysis classifiers ¢ their simplicity to see the characteristic
changes traced in the features due to these stiiwadi types of approach could be taken in
classification — 1) choice of meaningful statistifsatures followed by simple classifier, 2)
simple features followed by a complex classifidgreformer case is preferable in the present
case since it may help in understanding the changetistical behaviour of the signal which
might be indicative towards some consistent madlifi;n of the underlying biological
process.

Cross validation schemes are often employed tadahei introduction of any possible
bias due to the training data-set [38]. Here we tme leave one out cross validation
(LOOCV) where, if there arl data-points, ther\-1) number of samples is used for training
the classifier and the one held-out sample is tsadst the trained structure. Thereafter, the
single test sample will be included in the nexinirag set, and again a new sample from the
previous training set will be set aside as the test/data. This loop will go fa¥ times, till
all the samples have been tested and the averagsifidation accuracy for all thdl
instances are calculated [38].

3. Results

The classification results of 5 discriminant anayslassifier variants, using 11
statistical features from plant electrical signedponse to four different stimuliz. H2SQq,
NaCl of 5 ml and 10 ml and Lare presented in this section. We also investigatieh
stimuli are best detected by looking at the classibn accuracy, thereby suggesting the
ability of the plant to detect few particular stilmbetter than the others.

a) Need for subtracting the background information ofdividual features

Figure 3, shows the four plant electrical signapanses to four different stimuli
beginning at different amplitude levels. This meé#ms background signal (even before the
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application of the stimuli) is different in all fouifferent cases. This may bias the final
classification result due to the already separbsmkground information within the multiple
features considered. Due to the effect of diffelmatkgrounds, we can see a clear separation
between the stimuli for some features such as Hjonbbility, Hjorth complexity and
skewness, in Figure 4, where histogram plots fehea the features for each stimulus are
plotted without any background subtraction.

Before Background mean subtraction
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Figure 4: Normalized histogram plots for 11 indivéd features showing stimuli separability
(no background subtraction).
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Figure 5: Univariate histograms of each of the datdres for four different stimuli (with
background subtraction)
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This encourages us to look at only timeremental valueof the features under
different stimuli. The incremental values are ofeai by subtracting the mean of every
feature extracted from the background from the esponding feature extracted from the
post-stimulus part of the signal. The histogramtplof the incremental values of the
individual features, after the background is sudteéd, are given in Figure 5 which shows a
lesser separability in the stimuli which were apesoted. We now used these incremental
values of the features to see how good they apeaviding a successful classification (using
five different discriminant analysis classifier \aaits) between any two stimuli (six binary
combinations of four stimuli). As an example, alijb the histogram plots in Figure 5 shows
clear separation of the distributions for NaCl &wusing skewness as feature due to their
peaky nature, the frequency of occurrence of tegrams show that the distributions have
wider spread which has been reflected by the meelesde of classification reported in the
next subsections using that particular feature.

b) Correlation of features to avoid redundancy

Table 2:Correlation coefficient between 11 statistical iwas extracted from plant electrical
signals (after subtracting the mean of the pretgdtimfeatures from the post-stimulus ones)

Features H c’ IOR /4 yej My cy H a WE P
fi=H 1.00 | 0.09 | -0.03 | -0.06 | 0.07 | 0.04 | 003 | -0.11 | -0.22 | 0.70 0.26
fi=c’ * 1.00 | 083 | 0.01 | 0.10 | -0.05 | -023 | -0.10 | 0.21 0.02 0.07

fi=10R * * 1.00 | -0.04 | 0.02 | -0.08 | -0.31 | 0.01 0.53 -0.12 | 0.05
fa=7 * * * 1.00 | 029 | 0.00 | -0.06 | -0.09 | -0.07 | -0.08 | 0.00
fi=p * * * 1.00 | -0.01 | -0.23 | -0.14 | -0.03 0.14 0.06
Jo=my * * * 1.00 | 034 | -0.07 | -0.10 | 0.06 0.02
fr=cy ’5‘ * * * * * 1.00 | -0.12 | -0.28 | 0.06 0.09
fi=H * * * * # 1.00 | 064 | -0.15 | -0.16
fi—a * * * * # g 1.oo | -0.29 | -0.06

Jio=WE * " * * * * # * * 1.00 | -0.09
Vfl] — 13 * * * * * £ & * * * 1.00

Between all the features, a correlation test wasethout to find out their inter-
dependence. The result of this test, given in Tahles obtained by checking the Pearson
correlation coefficient values between all featpadrs. A correlation value of (~ +1/-1)
indicates a strong positive/negative correlatiotwken a pair, whereas a value closer to zero
indicates the feature pairs are independent andttawe more informative about the
underlying process. A good classification strategfyould ideally involve uncorrelated
features, in order to avoid redundancy in trairtimg classifier. In this work, we proceeded by
initially taking all features into account and thgnored the ones with high correlation.

c) Classification using univariate and bivariate feates
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The classification results were obtained in two svayusing univariate and bivariate
features, to make the analysis intuitive and simiplenfer. That is, instead of taking all the
features together to get a multivariate classiocatwhich may give good classification
accuracy but are less intuitive and reliable duedoease in complexity and dimension of the
problem), we just explored the results with 11 wdlial features and 55 possible feature
pairs.

Table 3 presents the results, obtained using iddalifeatures, averaged across all the
six stimuli combinations and all the five differeriassifier variants. We have also presented
the relative multi-class separability score giventhe scatter matrixS) in (7) for each
feature in terms of the within-clasSyf and between-clas§i) scatter matrix [38].

S:trace( St §)
S‘N:Zl: RS §:Z Bt = 1) (4= tto) o= B £12:0-

i=1

(7)

Here, Pi is the a-priori probability for the present folass problem ¢=4) and has been
considered as V.. Also, the mean and covariancecestior each of the classes are denoted

by {,ui,S,} and they,is the global mean vector. The scatter matrix edgethe concept of
class-separability using FDR from binary classtimato multi-class problems.
Table 3: Average accuracy (averaged across albisixry stimuli combinations and all five

classifier variants) and best accuracy (averageasadourone vs. resstimuli combinations)
for classification using individual features

Ranked Features Scatter matrix | Average accuracy for | Best accuracy for all
all binary stimulus ‘one vs. rest’ stimulus
combinations (%) combinations (%)

F; Mean ( ) 0.8453 70.87 73.01, Mahalanobis
Fa Wentropy (WE ) 0.2858 69.79 62.26, Mahalanobis
Fs Hjorth Complexity (¢, ) 0.1022 66.61 60.82, Mahalanobis
Fai Inter Quartile Range (/OR) 0.2838 65.07 63.62, LDA/Diaglinear
Fs Variance (o) 0.0453 63.57 65.58. LDA/ Diaglinear
Fs Average spectral power (P) 0.1385 60.51 61.58. Mahalanobis
F, DFA (&) 0.1989 60.14 61.28. Mahalanobis
Fs Kurtosis ( #) -0.0637 58.06 62.64, Mahalanobis
Fo Hjorth Mobility (1, ) 0.0064 57.45 61.44, Mahalanobis
Fio Skewness ( 7) -0.5731 54.55 62.09. Mahalanobis
Fu Hurst Exponent ( H) 0.0321 52.38 61.40, Mahalanobis

The scatter matrices value in Table 3 provide asight about how good the
separation between all the four classes (stimudi)using the individual features. From Table
3 we can see that the signal ‘mean’ on its ownthadest classification result for all the six
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binary combinations of four stimuli. However sinwe have extracted the features from the
raw non-stationary plant electrical signals, meamat a very reliable feature to base any
conclusions on, because it can be influenced byowsr artefacts and noise during
measurement or from various environmental facterg. (sudden gust of breeze could shake
the electrodes connected to the plant body ettg. fext five best features (best average
accuracies given in Table 3), when taken indiviyiare wavelet packet entropy, Hjorth
complexity, interquartile range, variance and agerspectral power respectively. From now
on, we will only consider these features as thefitgpfeatures. In Table 3, we also report the
best achievable accuracy along with the best €lassising each of the single features to
discriminate the four stimulus within arie vs. reststrategy. This highlights the possibility
of isolating one patrticular class from the othexrssks using a single feature, with a certain
degree of confidence.

So far we have seen the averaged results of dctag®ih for six binary stimuli
combinations using individual features. We nextlfthe best classified stimuli combination
using only the top five individual features andngsithe five variants of the discriminant
analysis classifiers, as mentioned above. As altresie obtained five classification
accuracies (for five individual features) for evetgssifier for each of the six binary stimuli
combination. That results in 25 classification aecies for each of the six binary stimuli
combinations. All these 25 results were averaged&sh stimuli combination and given in
Table 4 which shows the best discrimination possibifor HSOs and Q with classification
accuracy over 73%. Additionally, discrimination ween NaCl (both concentrations) and
O3/H2SOy also shows promising result with accuracy over @b 63% respectively.

Table 4: Accuracy using top five individual (uniiae) features (Fthrough k) and averaged
across five classifiers (average separability betwdifferent stimulus combinations)

Stimuli | NaCl5ml | NaCl10ml | H,SO; 0;

NaCl 5ml - 57.20% 64.02% | 65.94%

NaCl 10ml * - 63.17% | 67.29%

H>S0s * E - 73.03%
C)3 # ES Ed

The average classification results presented ideTdbencourages us to look at the
best results achieved using individual featuresgfch stimuli combination, so that we can
see if there is any consistent feature giving gdedsification results. This is shown in Table
5 from where it is evident that fHjorth complexity) gives the best result for tardifferent
binary stimuli combinations with an accuracy ovet% Overall, the best accuracy is
achieved for classification between3®x and Q, with an accuracy of >94% using: F
(Wentropy) and QDA classifier. Although in Tabletle discrimination between NaCl and
Os/H2S0Oy are shown in terms of the average accuracy whightnseem to be relatively low
(63% or 65%), the best cases for such a discrimimatan be found in Table 5 (accuracies of
>78% and >72% respectively) between the same sstirotili. Also from Figure 5 we can
see that though skewness shows a good discrimmagtween ESQ: and other stimuli,
from Table 3 we can see that the average clagsificaccuracy using skewness as an
individual feature is very low. This is due to tfaet that skewness on its own did not give
good classification results between other remaistirguli combinations.
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Table 5: Best accuracy taking individual featusdach stimulus combinations (best

separability between different stimulus combinagjon
Stimuli NaCl Sml NaCl10ml H:S04 O3

74.36% (F3, LDA 75.09% (Fs, 78.95% (Fs, LDA

NaCl 5ml classifier) Mahalonobis classifier) classifier)
i 72.13% (Fs, LDA 82.27% (Fs, QDA

NaCl 10ml classifier) classifier)
. ) 94.95% (F2. QDA

H2S04 classifier)

0s * * -

d) Classification using feature pairs

Table 6: Average accuracy obtained using top feadure pairs (bivariate) and five classifiers

(average separability between different st

imuluslooations)

Stimuli NaCl Sml NaCl 10ml H,S04 0O;
NaCl 5ml - 59.52% 58.21% 72.69%
NaCl 10ml g - 64.66% 76.60%
H>S04 * * - 74.60%
Os * * * i

NaCl 10ml vs. 5ml NaCl 5ml vs. Ozone

NaCl 5ml vs. H, SO,

Change in Accuracy

4

Features 2 Features

4 > 5
Features 2 Features

Features 2

Features

Figure 6: (top) Classification accuracy for diffetdeature combinations with background
information removed; (bottom) deterioration in a@ay for the features without background

information removed.

NaCl 10ml vs. Ozone

4 5 4
Features 2 Features  Features ?

14

NaCl10ml vs. H,S0,
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Next, we looked at the effect of all possible featpairs using 11 individual features
(totalling 55 independent feature pairs) on thessifecation results between six different
stimuli combinations. These classification accuweacre shown in Figure 6 along with the
difference in accuracy (error) when the backgroisndot subtracted as discussed in earlier

section. The features mentioned{]aﬁ,---,l}in Figure 6 are the features designated

by{ f,, f,,---, f;} respectively in Table 2. Since we ignored meaa fesature in the previous

section, we explored the effect of taking binarynbmations of the next five individual
features (B through k, as mentioned in Table 3) on the classificatiocueacy. The results
obtained using each of these bivariate featuressjpaising all the five classifier variants
were averaged and given in Table 6 which are faonde better than the averaged results
obtained using just univariate features as giveraile 4.

Table 7: Best accuracy for each stimulus combinatising two features (best separability
between different stimulus combinations)

Stimuli | NaCl 5ml NaCl 10ml H:S04 O;
63.18% (Fs-Fs with | 65.87% (Fs-Fs with | 82.69% (Fs-Fs with
NaCl 5ml Diaglinear) linear) Diaglinear)
NaCl N 3.18% (Fs-Fs with | 92.06% (Fs-Fs with
10ml Diagquadratic) Mahalanobis)
« * ) 87.48% (Fa-F5 with
H>S04 Quadratic)
O; # o o _

By this exploration, we wanted to find out if there any improvement on the
classification accuracy when a feature pair is usglder than just individual feature. From
Table 6, we can see that classification accuracynioved for all stimuli combination
except NaCl 5ml vs. ¥$0s.. We can also observe from Table 6 that the top bast
accuracies are obtained for stimuli combinationdNafCl 10ml vs. @and BSQ: vs. Q.
Now, let us look at the best feature pair(s), amalh®5 bivariate feature pairs, as given in
Table 7. We notice that a combination of fQR) and bk (variance) results in the best
classification accuracies for four out of six diffat stimuli combinations. For the remaining
two stimuli combinations, a feature pair of &d F (average spectral power) gives the best
classification accuracies.

e) Finding the most reliable combination of feature dieature pair and classifier
variant

So far we have found that individual featuresFs Fs and Fs and feature pairssHs
and R-Fs produced the best classification results for onenore (out of the six) stimuli
combinations. We now explore these features antiregairs for all stimuli combinations.
Table 8 gives the results of classification whenused just i Fs, Fs and s as an individual
feature using all classifier variants for all bipastimuli combinations. Similarly, Table 9
gives the results using the feature paiwd=fand R-Fs for all the six stimuli combinations,
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using all the five classifier variants. These reswlill help us choosing the right classifier
and deciding the feature or feature-pair which les the best average accuracy for all the
binary combinations of stimuli.

Table 8: Accuracy of different classifiers for sitimuli combinations (in %) using the best
individual features

Individual Classifier NaCl NaCl NaCl NaCl NaCl O3 vs Average

feature variant Sml vs Smlvs | Smlvs | 10mlvs | 10mlvs | H.SO4 | Accuracy
10ml H:SO.; 03 03. H:SO.; (0/0)
F2 LDA 553 66.4 73.4 77.6 59.5 82.8 69.2
(Wentropy) QDA 522 67.6 62 74 56.4 95 67.9
Diaglinear 553 66.4 73.4 77.6 59.5 82.8 69.2
Diagquadratic 522 67.6 62 74 67.3 95 69.7
Mahalanobis 55.5 73.1 73.7 78.2 63.8 94.4 73.1
F; (Hjorth LDA 74.4 73.9 78.9 66 68.3 66.9 714
Complexity) QDA 74.1 47.1 61.6 71.5 67.5 41.8 60.6
Diaglinear 74.4 73.9 78.9 66 68.3 66.9 714
Diagquadratic 74.1 47.1 61.6 71.5 67.5 41.8 60.6

Mahalanobis 74.4 75.1 62.4 51.1 69.4 81.5 69

Fs LDA 57.1 66.5 57.6 60.5 72.1 66.1 63.3
(Kurtosis) QDA 47.8 38.4 69.3 47.1 71.8 225 49.5
Diaglinear 57.1 66.5 57.6 60.5 72.1 66.1 63.3
Diagquadratic 47.8 38.4 69.3 47.1 71.8 22.5 49.5
Mahalanobis 57.7 58.2 38.5 81.3 71.3 81 64.7
Fs (Hjorth LDA 60.4 73.9 68.5 66 56 35.8 60.1
Mobility) QDA 49.7 47.7 76.4 82.3 48.7 81.6 64.4
Diaglinear 60.4 48.8 68.5 66 56 35.8 559
Diagquadratic 49.7 47.7 76.4 823 48.7 81.6 64.4
Mahalanobis 66.2 54.6 30.1 24.7 58.4 20.5 424

From Table 8, we note that using justd¥ Fs provides consistently better average
classification accuracies than using df¥ Fo. It is also noticed that although provides a
better classification for the stimuli combinatioNsCl 10ml vs. @ and Q vs. BRSOy, 3
provides much consistent and better result forrdrmeaining stimuli combinations. While
considering a single feature for discriminating ther stimuli, the best average result (73%)
could be obtained using the fVentropy) as feature and Mahalanobis classifighough it
is highly correlated with the signal mean)(&s shown in Table 2. Since mean as a feature
was ignored due to its susceptibility to artefathgrefore, we also ignore Wentropy and
instead propose Hjorth complexity as the best iddial feature for achieving good average
classification accuracy.

ng the individual features. Frolh REF _Ref38655784%Table 9 that the top two
classification accuracies (>73%) are obtained uBirlgs combination and Diagquadratic and
QDA as classifiers respectively. Both these topabate classification results (average
accuracy of 69.65% across all stimuli and classjieare better than that obtained in
univariate case in Table 8 (average accuracy d3882.across all stimuli and classifiers).
Although again from Table 2, we realize the IQR sadance are highly correlated with each
other but since we are achieving a good resulierms of classification using these two
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features, we note that calculating IQR and varidra® a block of 1000 samples of raw non-
stationary plant electrical signal, along with QA Diagquadratic classifier will provide
consistently good results in terms of classifyingich external stimuli caused the particular
signature in the plant electrical signal.

Table 9: Accuracy of different classifiers for sitimuli combinations (in %) using the best
feature pairs

Best Classifiers Na(Cl NaCl NaC(Cl NaC(Cl NaCl Osvs Average
feature Smlvs | Smlvs | Smlvs | 10ml 10ml vs H.S04 | Accuracy
set 10ml H,>SO04 O; vs O3 H>SO, (%)
Fa-Fs LDA 56.61 62.601 8§2.53 §1.57 69.24 85.09 72.94
IQR-
,( Q QDA 57.78 61.62 82.24 86.06 64.69 87.49 73.31
Variance) :
Diaglinear 63.17 53.8 82.7 83.47 62.06 80.33 70.92
Diagquadratic 60.34 58.43 82 86.08 73.19 81.98 73.67
Mahalanobis 62.17 50.23 80.24 92.07 53.64 78.91 69.54
F4—Fe LDA 56.88 65.87 71.61 70.06 67.94 81.27 68.94
IQR-
AE ,Q. QDA 57.82 57.01 73.89 81 05.19 78.48 68.9
Average
spectral Diaglinear 63.19 54.59 68.67 78.16 064.92 71.39 06.82
ower)
P Diagquadratic 58.11 60.57 79.19 75.70 67.96 79.66 68.31
Mahalanobis 62.61 52.99 62.72 79.62 58.08 060.84 63.20

We next explore some pairs of uncorrelated feattoeslassification by looking at
the 12 next best average classification accurgoieined across all stimuli combinations
and using all five different classifiers) as shaiwrough a 2D normalized histogram (volume
being unity) plots showing the separation of therfstimuli in Figure 7. Average accuracy
obtained (over all stimuli combinations and class#) using particular feature pairs (denoted
by f,f,,---, f,,, as described in Table 2) are also mentioned éntite of each subplot in

Figure 7. It is observed that the second best geethassification accuracy is achieved using
variance and skewness as features which are almmostrrelated (correlation of ~0.01 in
Table 2).

In Figure 7, except the first subplot with— f,, all the rest combinations are almost

uncorrelated and still give a good classificati@rfprmance. Thus as a reliable measure of
analysis, it has been found that theiance and skewnesgalculated from a block of 1000
samples of plant electrical signal will be able giwve an average (over all six stimuli
combinations and using all five discriminant cléiess) accuracy of 70% during binary
classification of the stimuli. It is to be notedathn the bivariate classification scheme, the
mean (k) has not been considered as one of the featutes, the best bivariate accuracies
were achieved involving the variance)Blong with all the other featuress(f11) in Figure

7, while ignoring the £Fs combination due to their high inter-dependenceaAsimmary, a
better reliable classification scheme is expect&¥-70%) involving bivariate features as
shown in Figure 7, with respect to the univarigatéires as given in Table 3 (<67%, ignoring
mean and Wentropy).
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Figure 7: Bivariate histograms of top feature puiith highest classification accuracy for all
the four stimuli (accuracy mentioned in title othaubplot).

The results presented in this work only takes atoount the experimental data for
individual stimulus under controlled environmerahdratory). The next step can be to setup
experiments where multiple stimuli could be appliedether on the plant and its electrical
signal response could be extracted for further yamaland classification of the most
influential stimuli. Also, the robustness of thatsdtical features due to possible artefact (e.g.
movement of the leaf due to wind, rainfall etc.p 40 be explored in future in a more
naturalistic environment, outside the controlldablatory set-up.

4. Discussion

In our exploration, the data from two channelsgiant (per experiment) were used to
record the electrical response, and then statistezdures were calculated from both the
channels and pooled together. Here, the locatiah@mplant body for the data extraction was
ignored, as the work was primarily focussed moretlon possibility of classification of
applied external stimuli from the extracted plalgctical signal. Similarly the effect of a
different species of plants to study all the fotimsli have also been ignored, except the
introduction of an additional species (cucumben) @zone stimulus. The idea behind
developing an external stimuli classification sckerased on plant electrical response is
focussed on generic plant signal behaviour andofice specific species. However such
isolation forms a very good study and could bertake as future scope of work. There might
be some possibility of confounding effects basedhenposition of the electrodes and plant
species in any classification scheme. But sucharording effects will be minimal due to the
large number of data samples as shown in TabledXteuse of cross-validation scheme to
test the performance of the discriminant analylsissifiers. Also we did not use kernel based
nonlinear classifiers like SVM which could over-fitese plant specific characteristics and
still give good classification result, renderingethoss of generalizing capability of the
classifier.

Moreover, the present classification scheme isdasethe raw non-stationary plant
signal. In bio-signal processing literature [113ing of high-pass filter is recommended to
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make a bio-signal stationary instead of extracteajures from the raw non-stationary signal.
But there is also a possibility with an ad-hocefilhg that some useful information in the data
may get lost since the cut-off frequency for plaiginal processing is not yet known. That is
why we considered the features from the post-stisudignal to train the classifier by
removing any possible bias of the channel or plemig incremental features i.e. using the
mean of the features in the pre-stimulus part. 3égmentation of the signal in a block of
1000 samples also disregards the temporal infoomat the stimuli, since we primarily tried
to answer the question if classification is ind@edsible by looking at any segment of the
post-stimulus part of the signal. Also, in a rdadiscenario, we would not know when the
response to a particular stimulus started. So vesl ie base our classification on the in-
coming stream of live data.

5. Conclusion

Our exploration using raw electrical signals fromangs provides a platform for
realizing a plant signal based bio-sensor to diastie environmental stimuli. The
classification scheme was based on 11 statistemtufes extracted from segmented plant
electrical signals, followed by feature ranking argbrous univariate and bivariate feature
based classification using five different discriamt analysis classifiers. External stimuli like
H2SQs, Oz and NaCl in two different amounts (5 ml and 10 h@dye been classified using the
adopted machine learning approach with 11 statisteatures, capturing both the stationary
and non-stationary behaviour of the signal. Thessifecation has yielded a best average
accuracy of 70% (across all stimuli and five clfsssivariants using variance and skewness
as feature pairs) and the best individual accucy3.67% (across all stimuli and using
variance and IQR as feature pairs in Diagquadddissifier). The very fact that, by looking
at the statistical features of plant electricapmse, we can successfully detect which stimuli
caused the signal is quite promising. This will moily open the possibility of remotely
monitoring the environment of a large geographarel, but will also help in taking timely
preventive measures for natural or man-made disaste
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