1,419 research outputs found
Polaronic slowing of fermionic impurities in lattice Bose-Fermi mixtures
We generalize the application of small polaron theory to ultracold gases of
Ref. [\onlinecite{jaksch_njp1}] to the case of Bose-Fermi mixtures, where both
components are loaded into an optical lattice. In a suitable range of
parameters, the mixture can be described within a Bogoliubov approach in the
presence of fermionic (dynamic) impurities and an effective description in
terms of polarons applies. In the dilute limit of the slow impurity regime, the
hopping of fermionic particles is exponentially renormalized due to polaron
formation, regardless of the sign of the Bose-Fermi interaction. This should
lead to clear experimental signatures of polaronic effects, once the regime of
interest is reached. The validity of our approach is analyzed in the light of
currently available experiments. We provide results for the hopping
renormalization factor for different values of temperature, density and
Bose-Fermi interaction for three-dimensional
mixtures in optical lattice.Comment: 13 pages, 5 figure
Interplay between electron-phonon couplings and disorder strength on the transport properties of organic semiconductors
The combined effect of bulk and interface electron-phonon couplings on the
transport properties is investigated in a model for organic semiconductors
gated with polarizable dielectrics. While the bulk electron-phonon interaction
affects the behavior of mobility in the coherent regime below room temperature,
the interface coupling is dominant for the activated high contribution of
localized polarons. In order to improve the description of the transport
properties, the presence of disorder is needed in addition to electron-phonon
couplings. The effects of a weak disorder largely enhance the activation
energies of mobility and induce the small polaron formation at lower values of
electron-phonon couplings in the experimentally relevant window . The results are discussed in connection with experimental data of rubrene
organic field-effect transistors.Comment: 4 pages, 3 figure
Induced superfluidity of imbalanced Fermi gases near unitarity
The induced intraspecies interactions among the majority species, mediated by
the minority species, is computed for a population-imbalanced two-component
Fermi gas. Although the Feshbach-resonance mediated interspecies interaction is
dominant for equal populations, leading to singlet s-wave pairing, we find that
in the strongly imbalanced regime the induced intraspecies interaction leads to
p-wave pairing and superfluidity of the majority species. Thus, we predict that
the observed spin-polaron Fermi liquid state in this regime is unstable to
p-wave superfluidity, in accordance with the results of Kohn and Luttinger,
below a temperature that, near unitarity, we find to be within current
experimental capabilities. Possible experimental signatures of the p-wave state
using radio-frequency spectroscopy as well as density-density correlations
after free expansion are presented.Comment: 15 pages, 13 figures, submitted to Phys. Rev.
Transport implications of Fermi arcs in the pseudogap phase of the cuprates
We derive the fermionic contribution to the longitudinal and Hall
conductivities within a Kubo formalism, using a phenomenological Greens
function which has been previously developed to describe photoemission data in
the pseudogap phase of the cuprates. We find that the in-plane electrical and
thermal conductivities are metallic-like, showing a universal limit behavior
characteristic of a d-wave spectrum as the scattering rate goes to zero. In
contrast, the c-axis resistivity and the Hall number are insulating-like, being
divergent in the same limit. The relation of these results to transport data in
the pseudogap phase is discussed.Comment: 3 pages, 2 figure
Theory of optically forbidden d-d transitions in strongly correlated crystals
A general multiband formulation of linear and non-linear optical response
functions for realistic models of correlated crystals is presented. Dipole
forbidden d-d optical transitions originate from the vertex functions, which we
consider assuming locality of irreducible four-leg vertex. The unified
formulation for second- and third-order response functions in terms of the
three-leg vertex is suitable for practical calculations in solids. We
illustrate the general approach by consideration of intraatomic spin-flip
contributions, with the energy of 2J, where J is a Hund exchange, in the
simplest two-orbital model.Comment: 9 pages, 4 figures, to appear in J. Phys. Cond. Matte
Crossover from diffusive to non-diffusive dynamics in the two-dimensional electron gas with Rashba spin-orbit coupling
We present the calculation of the density matrix response function of the
two-dimensional electron gas with Rashba spin-orbit interaction, which is
applicable in a wide range of parameters covering the diffusive and
non-diffusive, the dirty and the clean limits. A description of the crossover
between the different regimes is thus provided as well. On the basis of the
derived microscopic expressions we study the propagating charge and
spin-polarization modes in the clean, non-diffusive regime, which is accessible
in the modern experiments.Comment: 8 pages, 6 figures, a considerable extension of the first versio
Variational solution of the T-matrix integral equation
We present a variational solution of the T-matrix integral equation within a
local approximation. This solution provides a simple form for the T matrix
similar to Hubbard models but with the local interaction depending on momentum
and frequency. By examining the ladder diagrams for irreducible polarizability,
a connection between this interaction and the local-field factor is
established. Based on the obtained solution, a form for the T-matrix
contribution to the electron self-energy in addition to the GW term is
proposed. In the case of the electron-hole multiple scattering, this form
allows one to avoid double counting.Comment: 7 pages, 7 figure
Green's and spectral functions of the small Frolich polaron
According to recent Quantum Monte Carlo simulations the small polaron theory
is practically exact in a wide range of the long-range (Frohlich)
electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov
transformation to convert the strong-coupling term in the Hamiltonian into the
form of an effective hopping integral and derive the single-particle Green's
function describing propagation of the small Frohlich polaron. One and two
dimensional spectral functions are studied by expanding the Green's function
perturbatively. Numerical calculations of the spectral functions are produced.
Remarkably, the coherent spectral weight (Z) and effective mass (Z')
renormalisation exponents are found to be different with Z'>>Z, which can
explain a small coherent spectral weight and a relatively moderate mass
enhancement in oxides.Comment: RevTeX, 5 pages, 2 postscript figures, LaTeX processing problems
correcte
Phonon-induced decoherence for a quantum dot spin qubit operated by Raman passage
We study single-qubit gates performed via stimulated Raman adiabatic passage
(STIRAP) on a spin qubit implemented in a quantum dot system in the presence of
phonons. We analyze the interplay of various kinds of errors resulting from the
carrier-phonon interaction as well as from quantum jumps related to
nonadiabaticity and calculate the fidelity as a function of the pulse
parameters. We give quantitative estimates for an InAs/GaAs system and identify
the parameter values for which the error is considerably minimized, even to
values below per operation.Comment: Final version; considerable extensions; 18 pages, 7 figure
Bosonization of strongly interacting electrons
Strong repulsive interactions in a one-dimensional electron system suppress
the exchange coupling J of electron spins to a value much smaller than the
Fermi energy E_F. The conventional theoretical description of such systems
based on the bosonization approach and the concept of Tomonaga-Luttinger liquid
is applicable only at energies below J. In this paper we develop a theoretical
approach valid at all energies below the Fermi energy, including a broad range
of energies between J and E_F. The method involves bosonization of the charge
degrees of freedom, while the spin excitations are treated exactly. We use this
technique to calculate the spectral functions of strongly interacting electron
systems at energies in the range J<<epsilon<< E_F$. We show that in addition to
the expected features at the wavevector k near the Fermi point k_F, the
spectral function has a strong peak centered at k=0. Our theory also provides
analytical description of the spectral function singularities near 3k_F (the
"shadow band" features).Comment: 21 pages, 4 figure
- …