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We present a variational solution of theT-matrix integral equation within a local approximation. This
solution provides a simple form for theT matrix similar to Hubbard models but with the local interaction
depending on momentum and frequency. By examining the ladder diagrams for irreducible polarizability, a
connection between this interaction and the local-field factor is established. Based on the obtained solution, a
form for theT-matrix contribution to the electron self-energy in addition to theGW term is proposed. In the
case of the electron-hole multiple scattering, this form allows one to avoid double counting.
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I. INTRODUCTION

As a result of the first cycle of an iterative solution of the
Hedin equations,1 the commonly usedGW approximation
sGWAd models the electron self-energy as the productS
= iG0W0 of a noninteracting Green functionG0 and a dy-
namically screened Coulomb interactionW0 obtained within
the random phase approximationsRPAd. The GWA that de-
scribes the long-range screening well has been successfully
applied to a broad spectrum of materials where the interac-
tion is not too strong and screening effects dominate. How-
ever, the GWA encounters difficultiessfirst of all in its de-
scription of the satellite structured in the case of systems with
localized states where short-range interaction prevails.2,3 For
such systems, one has to use a theory beyond the GWA. This
theory can be based on both an improvement of the RPA to
get a more realistic screening picture and an inclusion into
calculations of the electron self-energy of the higher-order
terms in the screened interaction.

The first attempt to improve the RPA by including the
effects of the exchange-correlationsXCd hole is well known
to have been undertaken by Hubbard,4 who introduced the
so-called local-field factor. The concept of the latter is that
all corrections to the RPA can be formally reduced to it.
However, the Hubbard local-field factorGsqd includes the
frequency-independent exchange hole correction only. Dia-
grammatically suchGsqd can be exactly derived by summing
the ladder diagrams for irreducible polarizability with acon-
tact interaction and noninteracting Green functionsssee, e.g.,
Ref. 5d. In order to explicitly include into consideration the
full static XC hole around the screening electron, Singwiet
al.6 have obtained more sophisticated expression forGsqd
which contains the equilibrium static pair-correlation
function.7 Further essential improvements in the derivation
of the local-field factor have recently been done by different
authors ssee, e.g., Refs. 8–10d who have studied the fre-
quency dependence of the XC hole.

The concept of the local-field factor has taken on a new
physical meaning in time-dependent density-functional
theory sTDDFTd.11 In the TDDFT within linear response

theory, the dynamical factorGsq ,vd is linked to the XC ker-
nel fXCsq ,vd. The latter plays the role of the time-dependent
sTDd XC interaction in addition to the Coulomb repulsionvc.
As a result, the response functionR can be written as12

Rsqd = Psqd + PsqdvcsuqudRsqd, s1d

where the irreducible polarizabilityP is defined by the equa-
tion

Psqd = P0sqd + P0sqdfXCsqdPsqd. s2d

Here and in the following we use the four-momentum vari-
able q as a shorthand forsq ,vd. In Eq. s2d P0 is the RPA
irreducible polarizability andfXCsqd=−vcsuqudGsqd.

In order to derive Eq.s2d from the Hedin equation for the
irreducible polarizability1

Psqd = −
2i

s2pd4 E dkGskdGsk − qdLsk,qd, s3d

whereGskd is the Green function andLsk,qd is the vertex
function,13 the latter must depend onone four-momentumq
only ssee, e.g., Refs. 14 and 15d, i.e.,

Lsk,qd =
1

1 − fXCsqdP0sqd
, s4d

which finally leads toPsqd=P0sqdLsqd.
Diagrammatically such a form for the vertex function has

been obtained by Richardson and Ashcroft in Ref. 8, using a
local approximation16 within a variational approach. They
have summed an infinite number of self-energy, exchange,
and fluctuation terms in the diagrammatic expansion ofL. In
contrast to the HubbardGsqd, the local-field factor derived
by this summation is a dynamical one.

The representations4d of the vertex function allows one to
include vertex corrections into the calculation of the electron
self-energyssee, e.g., Refs. 5, 15, and 17d. Thus, the concept
of the local-field factor suggested by Hubbard considerably
simplifies a problem of vertex corrections calculations in nu-
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merical applications and transfers all weight of the problem
to calculations of the local-field factorsor XC kerneld for real
systems.

Fundamentally distinct way to go beyond the GWA is
based on the use of theT matrix.18,19 The T-matrix approxi-
mation sTMA d originally was established to study strongly
correlated fermion systems with short-range interaction and
is strictly valid in the limit of an almost filled or, because of
particle-hole symmetry, an almost empty band.20,21 This ap-
proximation allows one to include processes involving mul-
tiple scattering between two electrons or two holes. This fact
makes the TMA capable of describing a satellite structure,
for example, in Ni.20,22–24However, these calculations were
performed using either a statically screened model
interaction24 or the Hubbard parameterU within Hubbard
models.20–23 In the latter, theT matrix in momentum space
depends only onone four-momentumfas well as the vertex
function s4d expressed in terms of the local-field factorg and
schematically can be represented as

Tsqd =
U

1 − UKsqd
, s5d

whereKsqd is the Fourier transform of the product of two
Green functions. In contrast to Eq.s4d, an object of principal
concern here is thelocal interactionU.

Heuristically combining the simplification of Hubbard
models, theT-matrix formalism of Ref. 24, and acontact
interactionW=Wsr ,r 8 ;v=0ddsr −r 8d as in Ref. 25, aGW
+T matrix approach has recently been developed in Ref. 26.
This approach has effectively been applied to an excited
electron lifetime in ferromagnetic Fe and Ni. In fact, com-
paring with the Hubbard models, one can find that the model
short-range interactionU in the method of Ref. 26 is re-
placed by the statically screened Coulomb interaction
W0sq ,v=0d. The possibility of such replacement was re-
cently suggested by several authors.24,28,29Additionally, the
importance of frequency dependence of the HubbardU has
been demonstrated in Ref. 29.

The motivation of this work is to find a way that allows us
to get the same result as the Hubbard model simplification
for the T-matrix which is free of model parameters and with
the momentum- and frequency-dependent local screened in-
teraction. In order to accomplish this, we employ a varia-
tional method8,30 to solve the Bethe-Salpeter equation for the
T matrix within a local approximation. As a result, theT
matrix depends only on one four-dimensional wave vector,
such as the vertex function expressed in terms of the local-
field factor.

The paper is organized as follows. In Sec. II, we construct
variational functionals and obtain from the vanishing of their
variational derivative a solution of theT-matrix integral
equation. In order to connect this solution with the results
known from the literature, in Sec. III we sum the exchange
terms in the diagrammatic expansion of the irreducible po-
larizability by using theT matrix obtained. In Sec. IV we
derive basic formulas for the electron self-energy beyond the
GWA. Finally, the conclusions are given in Sec. V.

II. T MATRIX

In this section we present mathematical expressions
which lead to a simple form for theT matrix depending on a
four-momentum only. We start from theT matrix as an object
which will help us in our treatment of the ladder diagrams
both for the irreducible polarizabilityP and for the electron
self-energyS. The matrix is defined by the following Bethe-
Salpeter equation18,24,26 sFeynman diagrams are shown in
Fig. 1d:

Tss8
a s1,2u3,4d = Ws1,2dds1 − 3dds2 − 4d

+ Ws1,2d E d18d28Kss8
a s1,2u18,28d

3 Tss8
a s18,28u3,4d, s6d

where W is the dynamically screened Coulomb interaction
and s labels the spin.a can be specified ase-e in the case
of multiple scattering between two electrons or holes and as
e-h in the case of multiple scattering between an electron and
a hole. The kernelKss8

a is the product of the Green functions
Gss1,2d:

Kss8
e-e s1,2u18,28d = iGss1,18dGs8s2,28d,

Kss8
e-h s1,2u18,28d = iGss1,18dGs8s28,2d.

We have used the shorthand notation 1;sr 1,t1d. As in the
majority of practical schemessincluding the commonly used
local-density approximation schemesd, we suggest for sim-
plicity that the system considered has properties of a homo-
geneous system. As a result, theT matrix s6d in momentum
space has the form31

FIG. 1. Feynman diagrams forTss8
e-e sad andTss8

e-h sbd in coordi-
nate space. TheT matrix is shown by the shaded square. The wiggly
lines signify the dynamically screened Coulomb interactionW. The
solid lines with arrows represent the Green functionG.
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Tss8
a sp1,p2up3,p4d = s2pd4Gss8

a sp1,p2up3,p4d

3d fp1 ± p2 − sp3 ± p4dg. s7d

In the notations, we use the upper sign for thee-e and the
lower sign for thee-h case. Thed-function in Eq.s7d reflects
the conservation of total four-momentum in a homogeneous
system and

Gss8
a sp1,p2up3,p4d

= Ws±p1 7 p3d +
i

s2pd4 E dkWskdGssp1 7 kdGs8sp2 + kd

3Gss8
a sp1 7 k,p2 + kup3,p4d. s8d

Feynman diagrams forGss8
a are shown in Fig. 2. It is conve-

nient to introduce the total center-of-mass wave vector and
the relative wave vectors18

Q = p1 ± p2 = p3 ± p4, q = 1
2sp1 7 p2d, q8 = 1

2sp3 7 p4d.

In terms of these new variables the functionGss8
a from

Eq. s8d can be cast into the form given by

Gss8
a sq,q8,Qd

; Gss8
a S1

2
Q + q, ±

1

2
Q 7 qu

1

2
Q + q8, ±

1

2
Q 7 q8D .

s9d

Defining

kss8,Q
a skd =

i

s2pd4GssQ 7 kdGs8skd s10d

and

Fss8
a sq,k,Qd = dsq − kd − Ws±q 7 kdkss8,Q

a s± 1
2Q 7 kd ,

s11d

one derives from the starting equations8d the relation

E dkFss8
a sq,k,QdGss8

a sk,q8,Qd = Ws±q 7 q8d. s12d

The integral Eq.s12d can also be obtained from the van-
ishing of a functional derivative

dFafG,W,Gg
dGss8

a sq,q8,Qd
= 0, s13d

whereF, a functional of three independent variablesG, W,
andG, is given by

FafG,W,Gg

= o
ss8

E dkdq8dQGss8
a sk,q8,Qdkss8,Q

a S±
1

2
Q 7 kD

3HE dpFss8
a sk,p,QdGss8

a sp,q8,Qd − 2Ws±k 7 q8dJ
3kss8,Q

a S±
1

2
Q 7 q8D . s14d

Taking a trial solution in the spirit of the local approximation
of Ref. 8

Gss8
a sq,q8,Qd = G̃ss8

a sQd, s15d

we find that

G̃ss8
a sQd =

W̃ss8
a sQd

1 − W̃ss8
a sQdKss8

a sQd
, s16d

where

Kss8
a sQd =E dpkss8,Q

a spd,

W̃ss8
a sQd = fKss8

a sQdg−1Mss8
a sQdfKss8

a sQdg−1,

Mss8
a sQd =E dqdpkss8,Q

a sqdWsq − pdkss8,Q
a spd.

Thus, we have obtained theT matrix as a function of the
total center-of-mass wave vectorQ only. Comparing Eq.s16d
with Eq. s5d, one can see that instead of the Hubbard param-
eterU we have a momentum- and frequency-dependent local

interactionW̃ss8
a sQd. The structure ofG̃ss8

a in terms of this
local interaction is schematically illustrated in Fig. 3.

FIG. 2. Feynman diagrams forGss8
e-e sad andGss8

e-h sbd in momen-
tum space.
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III. IRREDUCIBLE POLARIZABILITY

We will show here that theT matrix s16d produces the
irreducible polarizability in the form of Eq.s2d with the
local-field factor existing in the literature. Actually, theT
matrix allows one to sum the all-order exchange diagrams in
the irreducible polarizability diagrammatic expansionscorre-
sponding Feynman diagrams are shown in Fig. 4d:

Ps1,2d = P0s1,2d + o
s
E d3d4d5d6Gss1,3dGss4,1d

3 Tss
e-hs3,4u5,6dGss2,6dGss5,2d. s17d

In momentum space, we have

Pspd = − o
s
E dkdqkss,p

e-h skdHdsk − qd

+ Gss
e-hSk +

1

2
p,q +

1

2
p,pDkss,p

e-h sqdJ . s18d

By substituting theT matrix s16d into Eq. s18d one obtains32

Pspd = − o
s

Kss
e-hspdf1 − W̃ss

e-hspdKss
e-hspdg−1. s19d

As a result, knowing thatP0sQd=−osKss
e-hsQd, in the local

approximation the irreducible polarizabilityPsqd for para-
magnetic systems has the following familiar form:33

Pspd = P0spdLspd = P0spdf1 + vcsqdGspdP0spdg−1 s20d

with the local-field factor Gspd=W̃e-hspd /2vcspd, where

W̃e-hspd= 1
2osW̃ss

e-hspd. This factor and the exchange part of
the local-field factor of Ref. 8 are formally the same.

Next, we notice that, by representing the local interaction

as W̃e-h=vc/ «̃, the local-field factor can be expressed in
terms of the RPA dielectric response function«0=1−vcP

0

and the first order correctionD«s1d=vcosMss
e-h to «0 as34

G =
1

2
«̃−1 =

D«s1d

f1 − «0g2 . s21d

A similar expression for the imaginary part ofGsqd and with
the longitudinal Lindhard dielectric function instead of«0

was obtained in Ref. 9, whereD«s1d contains the leading
corrections to the RPA calculated within the model of the
homogeneous electron gas. Atv=0, the factors21d is akin to
the static local-field factor which has been calculated and
parametrized in Ref. 27.

Thus, in thee-h case, we have the transparent connection
between the obtained local interaction and the exchange part
of the local-field factor arising from the first order inW
exchange irreducible polarizability diagram. In this sense,

the interactionW̃e-h agrees conceptually with the XC kernel
considered in Ref. 35.

IV. SELF-ENERGY

In this section we show how the electron self-energy and
theT matrix s16d are related. As is known,18,24,26the electron
self-energy obtained from theT matrix consists of a direct
term and an exchange onesFeynman diagrams are shown in
Fig. 5d. The direct term

FIG. 3. A diagrammatic representation of the trial solution

G̃ss8
a sQd, Eq. s16d, shown for thee-e sup-directed arrow on the

right-hand part of the bubbleKss8
a d ande-h sdown-directed arrowd

cases.

FIG. 4. Feynman diagrams for the irreducible polarizabilityP in
coordinate space. The RPA bubbleson the leftd and the ladder dia-
grams son the rightd expressed in terms of theT matrix sshaded
squared are represented here.

FIG. 5. Feynman diagrams for the directsad and exchangesbd
terms of the electron self-energy.
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Ss
ds1,3d = − io

s8
E d2d4hGs8s4,2dTss8

e-e s1,2u3,4d

+ Gs8s2,4dTss8
e-h s1,2u3,4dj s22d

hase-e ande-h contributions, while the exchange term

Ss
xs2,3d = i E d1d4Gss4,1dTss

e-es1,2u3,4d s23d

is defined by the spin-diagonal part of theTe-e matrix only.
The Fourier transform of these terms leads to

Ss
dspd = −

i

s2pd4o
s8
E dkGs8skd

3HGss8
e-e Sp − k

2
,
p − k

2
,p + kD

+ Gss8
e-h Sp + k

2
,
p + k

2
,p − kDJ s24d

and

Ss
xspd =

i

s2pd4 E dkGsskdGss
e-eSk − p

2
,
p − k

2
,p + kD s25d

correspondingly. It is obvious from Eqs.s24d and s25d that
with the T matrix of Eq. s16d the exchange term and the
spin-diagonal part of thee-e contribution in the direct term
are, in fact, identical except for a sign. As a result, as well as
in the Hubbard models, these terms are canceled.

We notice here that, by substituting theT matrix as a
solution of Eq.s12d into Eqs.s24d ands25d, one obtains36 for
the direct term four lowest order diagramssshown in Fig. 6d
which disagree with the solution of the Hedin equations.37 In
order to avoid this problem, first of all, following Refs. 24
and 26, we merely separate the first order exchange termsthe
GWA electron self-energy termSs

GWd from others. Next, we
formally expand theT matrix s16d into series, put into con-
sideration a new valueT ss8

a containing the secondsor third

in thee-h cased and higher order inW̃ss8
a items, and connect

this value with theT matrix. This procedure yields

T ss8
e-e skd = G̃ss8

e-e skdKss8
e-e skdW̃ss8

e-e skd,

T ss8
e-h skd = G̃ss8

e-h skdfKss8
e-h skdW̃ss8

e-h skdg2.

On retaining the second order inW̃ss8
e-e item in T ss8

e-e , we
provide, thereby, the cancellation of the spin-diagonale-e
part of Ss

dspd andSs
xspd. Thus, additionally to theGW term,

we obtain as aT matrix contribution to the electron self-
energy the following:

Ss
Tspd = −

i

s2pd4 E dkhG−sskdT s-s
e-e sp + kd

+ o
s8

Gs8skdT ss8
e-h sp − kdj. s26d

Now we have only one term

Ss8spd = −
i

s2pd4 E dkG−ssk − pdW̃s-s
e-e skdKs-s

e-e skdW̃s-s
e-e skd,

which should be excluded from theT-matrix contribution
s26d. As a result, the electron self-energy can be expressed as
Ss=Ss

GW+Ss
T−Ss8. The last item is an analog of the so-called

double counting term.2,24 In contrast to Ref. 26, such item is
present at thee-e contribution only.

Employing the established connection betweenW̃e-hsqd
andGsqd, one can, in principle, evaluate theTe-h-matrix con-

tribution s26d sdenoted asSTe-h
d to the self-energy, addition-

ally to the GW term, by using one of the local-field factors
existing in the literature. But at present it can be seemingly
done only for the homogeneous electron gas for which these
factors have been obtained and parametrized.

Here, in order to roughly estimate the magnitude ofSTe-h
,

we exploit the staticGsqd of Ref. 27. We have calculated the
imaginary part of the electron self-energy for two values of
the electron density corresponding to aluminiumsrs=2.07d
and potassiumsrs=4.86d. Our results are shown in Fig. 7. It

follows from the figure that in generalSTe-h
is essentially less

then SGW especially in the region where the decay due to
creation of plasmons prevails. However, in the vicinity of the
Fermi wave vector theTe-h-matrix contribution amounts on
average to,50% s70%d in relation to theGW term for rs
=2.07s4.86d. This fact says that the contribution in question
can be important in calculations of the decay of excited elec-
trons whose initial energy is close to the Fermi energy. It is
clear from the insets in Fig. 7 that the multiple scattering
leads to shortening of the lifetime of such electrons. Note
also that the values of the ratioSTe-h

/SGW become greater
when the electron density decreases.

V. CONCLUSIONS

In conclusion, we have presented a variational solution of
the Bethe-Salpeter equation which determines theT matrix
describing multiple scattering both between two electrons or
two holes and between an electron and a hole. The solution
has been obtained within a local approximation. The

FIG. 6. Four redundant diagrams originated from theTe-e matrix
sleft columnd and from theTe-h matrix sright columnd.
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resulting expression for theT matrix is similar to that in
Hubbard models but contains the local interaction depending
on momentum and frequency. Thus the realized variational
approach can be viewed as a method to evaluate the local
interaction parameterU. In the case of multiple electron-hole
scattering, a connection of this interaction with the local-field
factors known from the literature has been established. We
have also proposed a form of theT-matrix contribution to the
electron self-energy which allows one to sum an infinite
number of the electron-hole ladder diagrams for the electron
self-energy without double counting.
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in the irreducible polarizability.

35I. V. Tokatly and O. Pankratov, Phys. Rev. Lett.86, 2078s2001d.
36This problem does not appear when we use theT matrix starting

in its diagrammatic expansion from the third order inW. But in

this case the local interactionW̃ss8
a skd has more complicated

expression of the third order inW.
37J. C. Inkson,Many-body Theory of SolidssPlenum Press, New

York, 1984d.
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