89 research outputs found

    Protection of macrogrids and microgrids by smart selection of electrical quantities

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.This thesis addresses two nearly separate topics in power systems: macrogrid protection and microgrid protection. These two types of grids differ in some principal electric characteristics that determine how to deal with faults. For example, the ratio between reactance and resistance is far larger in macrogrids than in microgrids. However, the basic principles in protective relaying hold true for both cases, i.e., protection should be reliable, fast, and selective for both macrogrids and microgrids. In this thesis, the concept of smart selection of electrical quantities (EQ) is introduced for the first time to identify faults in both macrogrids and microgrids by using specific EQs instead of immediate electrical signals. Thanks to the advanced technology in digital relays, it is now possible to program protective relays based on the unique features of some EQs whereby fault and non-fault conditions can be discriminated. This way, protection engineers can benefit from the advantages of these methods in terms of more reliable operation and ease of implementation and setting. At first, this thesis details different elements of fault identification or protective relaying. Then, macrogrid protection is considered in Part I of this thesis. Fault detection, fault polarization, faulted phase selection, and fault location on transmission lines are addressed. Thanks to the smart selection of EQs, the presented methods require less setting or no setting, while the reliable operation is preserved. Since multiple protective schemes already exist in macrogrids, the presented methods in Part I contribute to state-of-the-art technology with an improvement to protective relaying in macrogrids. Part II of this thesis is devoted to microgrid protection, where a reliable protective scheme is yet to come. Firstly, fault characteristics of inverters, an essential part of microgrids to be understood, are analysed, which in turn helps us with inverter models in the sequence domain, an unavoidable concept in protective relaying. Fault polarization is then addressed, as this author believes that a faulted section in microgrids can be more reliably identified by a directional comparison scheme than other protective schemes. This, however, depends on the correct outcome of fault direction. Developing the sequence models of inverters, and following the same idea, i.e., smart selection of EQs, the author tackled critical challenges to the protection of microgrids by developing new methods of fault polarization in microgrids. The directional elements developed based on these techniques can cope with the complexities caused by faults in microgrids

    Problematic soil mechanics in the Algerian arid and semi-arid regions: Case of M’sila expansive clays

    Get PDF
    This paper presents a state-of-the art review on the behavior of problematic soils in arid and semi-arid regions in Algeria, where significant damages frequently appear affecting the road infrastructures, roadway systems and various networks and other small civil and industrial constructions. It deals with characterization and treatment experimental studies on some Algerian expansive natural soils, including those conducted on M’sila expansive clays

    Marketing Mix from the Perspective of Islamic Economics (Application)

    Get PDF
    Thesis (M.A.(Islamic Studies))--Prince of Songkla University, 2018The study aimed to understand the concept of marketing from the perspective of the Islamic economy and the reality of its development in the strategies of Islamic institutions1 and also highlight the marketing mix in its Islamic concept and to show the most important differences between it and the traditional marketing mix And to study the extent of application the elements of the Islamic marketing mix in some Islamic establishment in southern Thailand, and extract its developmental effects and results obtained from the marketing operations of the marketing mix in those institutions. The researcher used inductive methodology and comparative approach on the theoretical side of the study, by collecting information from various sources and references related to the subject of the study, and clarifying the difference between the marketing mix from the Islamic perspective and the traditional perspective. The analytical method was used to analyse the results and information obtained from personal interviews with some managers and institutional officials Islamic countries on the extent of their application to the Islamic marketing mix and its impact on economic development. One of the most important findings of the study is that marketing from an Islamic perspective is based on integrated operations aimed at the well-being and self-sufficiency of individuals without squandering or waste of wealth and linking their operations with Islamic values and principles to achieve sustainable development economically and socially. Islamic marketing is a traditional marketing that is committed to the principles and principles of Islamic Sharia in all its operations and strategies developed from the production institutions, services and directed to individuals, unlike conventional marketing, which focuses on the operations of the economic schools and studies and research on consumption and consumers to maximize profitability and market shares . As marketing is an essential element in the structure of institutions and the use of its own capabilities to achieve the established objectives, the application of marketing in the Islamic institutions selected as a sample for research is still limited to the lack of a special section of marketing in their management structures and lack of the necessary cadre and specialist in marketing. Despite the limited marketing activities and the activation of the marketing mix in these institutions, they showed good results in achieving their objectives. āļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰āļĄāļĩāļˆāļļāļ”āļĄāļļāđˆāļ‡āļŦāļĄāļēāļĒāđ€āļžāļ·āđˆāļ­āļŦāļēāđāļ™āļ§āļ„āļīāļ”āļ”āđ‰āļēāļ™āļāļēāļĢāļ•āļĨāļēāļ”āļˆāļēāļāļĄāļļāļĄāļĄāļ­āļ‡āļ‚āļ­āļ‡āđ€āļĻāļĢāļĐāļāļĻāļēāļŠāļ•āļĢāđŒāļ­āļīāļŠāļĨāļēāļĄāđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āđ„āļ›āđ„āļ”āđ‰āđƒāļ™āļāļēāļĢāļžāļąāļ’āļ™āļēāļĒāļļāļ—āļ˜āļĻāļēāļŠāļ•āļĢāđŒāļāļēāļĢāļ•āļĨāļēāļ”āļ‚āļ­āļ‡āļŠāļ–āļēāļšāļąāļ™āļ­āļīāļŠāļĨāļēāļĄ āđ‚āļ”āļĒāđ€āļ™āđ‰āļ™āļĻāļķāļāļĐāļēāļāļēāļĢāļœāļŠāļĄāļœāļŠāļēāļ™āļ”āđ‰āļēāļ™āļāļēāļĢāļ•āļĨāļēāļ”āđƒāļ™āđāļ™āļ§āļ„āļīāļ”āļ­āļīāļŠāļĨāļēāļĄāđāļĨāļ°āļ™āļģāđ€āļŠāļ™āļ­āļ‚āđ‰āļ­āđāļ•āļāļ•āđˆāļēāļ‡āļ—āļĩāđˆāļŠāļģāļ„āļąāļāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļēāļĢāļ—āļģāļāļēāļĢāļ•āļĨāļēāļ”āđƒāļ™āļĢāļđāļ›āđāļšāļšāļ­āļīāļŠāļĨāļēāļĄāļāļąāļšāđƒāļ™āļĢāļđāļ›āđāļšāļšāļ­āļ·āđˆāļ™āđ† āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļĄāļĩāļāļēāļĢāļĨāļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ€āļ‚āđ‰āļēāđ„āļ›āļĻāļķāļāļĐāļēāļ–āļķāļ‡āļ‚āļ­āļšāđ€āļ‚āļ•āđƒāļ™āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļŦāļĨāļąāļāļāļēāļĢāļāļēāļĢāļ—āļģāļ•āļĨāļēāļ”āđāļšāļšāļ­āļīāļŠāļĨāļēāļĄāđƒāļ™āļŠāļ–āļēāļšāļąāļ™āļ­āļīāļŠāļĨāļēāļĄāļšāļēāļ‡āļŠāļ–āļēāļšāļąāļ™āđƒāļ™āļ āļēāļ„āđƒāļ•āđ‰āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āđ€āļžāļ·āđˆāļ­āļ™āļģāđ€āļŠāļ™āļ­āļ‚āđ‰āļ­āļĄāļđāļĨ āļšāļ—āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđāļĨāļ°āļšāļ—āļŠāļĢāļļāļ›āļ—āļĩāđˆāđ„āļ”āđ‰āļĄāļēāļˆāļēāļāļāļēāļĢāļĻāļķāļāļĐāļēāļ™āļĩāđ‰ āđƒāļ™āļ”āđ‰āļēāļ™āļ—āļĪāļĐāļŽāļĩāļ™āļąāļāļ§āļīāļˆāļąāļĒāđ„āļ”āđ‰āđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢāļ­āļļāļ›āļ™āļąāļĒāđāļĨāļ°āļ§āļīāļ˜āļĩāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāđƒāļ™āļāļēāļĢāļĢāļ§āļšāļĢāļ§āļĄāļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļēāļāđāļŦāļĨāđˆāļ‡āļ•āđˆāļēāļ‡āđ†āļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡āļāļąāļšāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāđāļĨāļ°āđ€āļžāļ·āđˆāļ­āđƒāļŠāđ‰āļŠāļĩāđ‰āļŠāļąāļ”āļ–āļķāļ‡āļ‚āđ‰āļ­āđāļ•āļāļ•āđˆāļēāļ‡āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļēāļĢāļ•āļĨāļēāļ”āđāļšāļšāļœāļŠāļĄāļœāļŠāļēāļ™āđƒāļ™āļĢāļđāļ›āđāļšāļšāļ­āļīāļŠāļĨāļēāļĄāđāļĨāļ°āļāļēāļĢāļ•āļĨāļēāļ”āđƒāļ™āļĢāļđāļ›āđāļšāļšāļ­āļ·āđˆāļ™āđ† āļ­āļĩāļāļ—āļąāđ‰āļ‡āđ„āļ”āđ‰āđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļžāļ·āđˆāļ­āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļŠāļąāļĄāļ āļēāļĐāļ“āđŒāļāļĢāļĢāļĄāļāļēāļĢāđāļĨāļ°āļžāļ™āļąāļāļ‡āļēāļ™āļ‚āļ­āļ‡āļŠāļ–āļēāļšāļąāļ™āļāļĨāļļāđˆāļĄāđ€āļ›āđˆāļēāļŦāļĄāļēāļĒāļ–āļķāļ‡āļ‚āļ­āļšāđ€āļ‚āļ•āđƒāļ™āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļŦāļĨāļąāļāļāļēāļĢāļāļēāļĢāļ—āļģāļ•āļĨāļēāļ”āđāļšāļšāļ­āļīāļŠāļĨāļēāļĄāđƒāļ™āļ­āļ‡āļ„āđŒāļāļĢāļ‚āļ­āļ‡āļžāļ§āļāđ€āļ‚āļē āđāļĨāļ°āļœāļĨāļžāļ§āļ‡āļ‚āļ­āļ‡āļĄāļąāļ™āļ•āđˆāļ­āļāļēāļĢāļžāļąāļ’āļ™āļēāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ‚āļ­āļ‡āļ­āļ‡āļ„āđŒāļāļĢ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļāļēāļĢāļ•āļĨāļēāļ”āđāļšāļšāļ­āļīāļŠāļĨāļēāļĄāļ™āļąāđ‰āļ™āļĒāļķāļ”āļŦāļĨāļąāļāļāļēāļĢāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđāļšāļšāļšāļđāļĢāļ“āļēāļāļēāļĢāđ‚āļ”āļĒāļĄāļĩāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļ„āļ·āļ­āļŠāļĢāđ‰āļēāļ‡āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ­āļĒāļđāđˆāļ—āļĩāđˆāļ”āļĩāļ‚āļķāđ‰āļ™āđāļĨāļ°āļ„āļ§āļēāļĄāļžāļ­āđ€āļžāļĩāļĒāļ‡āđ‚āļ”āļĒāļ›āļĢāļēāļĻāļˆāļēāļāļ„āļ§āļēāļĄāļŠāļļāļĢāļļāđˆāļĒāļŠāļļāļĢāļēāļĒ āđāļĨāļ°āļĄāļĩāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ‚āļĒāļ‡āļāļēāļĢāļ—āļģāļāļēāļĢāļ•āļĨāļēāļ”āļāļąāļšāļ„āđˆāļēāļ™āļīāļĒāļĄāđāļĨāļ°āļŦāļĨāļąāļāļāļēāļĢāļ‚āļ­āļ‡āļĻāļēāļŠāļ™āļēāļ­āļīāļŠāļĨāļēāļĄāđ€āļ›āđ‡āļ™āļŦāļ™āļķāđˆāļ‡āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ€āļāļīāļ”āļāļēāļĢāļžāļąāļ’āļ™āļēāļ—āļēāļ‡āđ€āļĻāļĢāļĐāļāļāļīāļˆāđāļĨāļ°āļŠāļąāļ‡āļ„āļĄāļ„āļ§āļšāļ„āļđāđˆāļāļąāļ™āđ„āļ›āļ­āļĒāđˆāļēāļ‡āļĒāļąāļ‡āļĒāļ·āļ™ āđāļĨāļ°āļˆāļēāļāļāļēāļĢāļ—āļĩāđˆāļĄāļąāļ™āļĒāļķāļ”āļŦāļĨāļąāļāļāļēāļĢāļ­āļīāļŠāļĨāļēāļĄāđƒāļ™āļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļ‡āļēāļ™āđāļĨāļ°āđƒāļ™āļāļēāļĢāđ€āļĨāļ·āļ­āļāđƒāļŠāđ‰āļāļĨāļĒāļļāļ—āļ˜āđŒāđƒāļ™āļ—āļļāļāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļˆāļąāļ”āļāļēāļĢ āļˆāļķāļ‡āļ—āļģāđƒāļŦāđ‰āļĄāļąāļ™āđāļ•āļāļ•āđˆāļēāļ‡āļˆāļēāļāļāļēāļĢāļ•āļĨāļēāļ”āđāļšāļšāļ—āļąāđˆāļ§āđ„āļ›āļ­āļĒāđˆāļēāļ‡āđ€āļ”āđˆāļ™āļŠāļąāļ” āļ™āļąāđ‰āļ™āļ­āļēāļˆāđ€āļ›āđ‡āļ™āđ€āļžāļĢāļēāļ°āļ§āđˆāļēāļāļēāļĢāļ•āļĨāļēāļ”āđāļšāļšāļ—āļąāđˆāļ§āđ„āļ›āļĄāļąāļāļĄāļļāđˆāļ‡āđ€āļ™āđ‰āļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāļžāļđāļ™āļœāļĨāļāļģāđ„āļĢāđāļĨāļ°āļŠāđˆāļ§āļ™āđāļšāđˆāļ‡āļ—āļēāļ‡āļāļēāļĢāļ•āļĨāļēāļ”āļŦāļĢāļ·āļ­āļœāļĨāļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāļ•āļ™āđ€āļ­āļ‡āđ€āļ›āđ‡āļ™āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ™āļąāđ‰āļ™āđ€āļ­āļ‡ āđāļĨāļ°āļˆāļēāļāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āļ„āļ‡āļžāļšāļ­āļĩāļāļ§āđˆāļē āļ‚āļ­āļšāđ€āļ‚āļ•āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļāļēāļĢāļ•āļĨāļēāļ”āđāļšāļšāļœāļŠāļĄāļœāļŠāļēāļ™āđƒāļ™āļŠāļ–āļēāļšāļąāļ™āļ­āļīāļŠāļĨāļēāļĄ(āļāļĨāļļāđˆāļĄāđ€āļ›āđˆāļēāļŦāļĄāļēāļĒ)āļ™āļąāđ‰āļ™āļĒāļąāļ‡āļ„āđˆāļ­āļ™āļ‚āđ‰āļēāļ‡āļĄāļĩāļ‚āļĩāļ”āļˆāļģāļāļąāļ”āļ­āļĒāļđāđˆ āļ­āļąāļ™āđ€āļ™āļ·āđˆāļ­āļ‡āļĄāļēāļˆāļēāļāļĒāļąāļ‡āļ‚āļēāļ”āļāđˆāļēāļĒāļāļēāļĢāļ•āļĨāļēāļ”āđāļĨāļ°āļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ™āļēāļāđƒāļ™āļ”āđ‰āļēāļ™āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđƒāļ™āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ‚āļ­āļ‡āļ­āļ‡āļ„āđŒāļāļĢ āđāļ•āđˆāļ–āļķāļ‡āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄāļŠāļ–āļēāļšāļąāļ™āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļāđ‡āļĒāļąāļ‡āļŠāļēāļĄāļēāļĢāļ–āļ‚āļąāļšāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ­āļ‡āļ„āđŒāļāļĢāļ‚āļ­āļ‡āļ•āļąāļ§āđ€āļ­āļ‡āđ„āļ›āļŠāļđāđ‰āđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļ—āļĩāđˆāļ§āļēāļ‡āđ„āļ§āđ‰āđ„āļ”āđ‰āđ€āļ›āđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļ”

    Automating equipment productivity measurement using deep learning

    Get PDF
    Measuring the productivity of earth moving equipment help to identify their inefficiencies and improve their performance; however, measurement processes are time and resource intensive. Current literature has foccussed on automating equipment activity capture but still lack adequate approaches for measurement of equipment productivity rates. Our contribution is to present a methodology for automating equipment productivity measurement using kinematic and noise data collected through smartphone sensors from within equipment and deep learning algorithms for recognizing equipment states. The testing of the proposed method in a real world case study demonstrated very high accuracy of 99.78 in measuring productivity of an excavator

    Measuring and benchmarking the productivity of excavators in infrastructure projects: A deep neural network approach

    Get PDF
    Inefficiencies in the management of earthmoving equipment greatly contribute to the productivity gap of infrastructure projects. This paper develops and tests a Deep Neural Network (DNN) model for estimating the productivity of excavators and establishing a productivity measure for their benchmark. After investigating current practices for measuring the productivity of earthwork equipment during 13 interviews with selected industry experts, the DNN model was developed and tested in one of the ‘High Speed rail second phase’ (HS2) sites. The accuracy of prediction achieved by the DNN model was evaluated using the coefficient of determination (R2) and the Weighted Absolute Percentage Error (WAPE) resulting in 0.87 and 69.64%, respectively. This is an adequate level of accuracy when compared to other similar studies. However, according to the WAPE method, the accuracy is still 10.36% below the threshold (i.e. 80%) expected by the industry experts. An inspection of the prediction results over the testing period (21 days) revealed better precision in days with high excavation volumes compared to days with low excavation volumes. This was attributed to the likely involvement of manual work (i.e. archaeologists in the case of the selected site) alongside some of the excavators, which caused gaps in telematics data. This indicates that the accuracy attained is adequate, but the proposed approach is more accurate in a highly mechanised environment (i.e. excavation work with equipment predominantly and limited manual interventions) compared to a mixed mechanised-manual working environment. A bottom-up benchmark measure (i.e. excavation rate) that can be used to measure and benchmark the excavation performance of an individual or a group of equipment, through a work area, to a whole site was also proposed and discussed

    Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov

    Full text link
    [EN] During a survey of black foot disease in Algerian grapevine nurseries, a collection of 79 Cylindrocarpon-like isolates were obtained. Based on morphology and DNA sequence data of histone H3 (his3), three species of Dactylonectria were identified including Dactylonectria torresensis (40 isolates), D. macrodidyma (24 isolates) and D. novozelandica (14 isolates). In addition, one isolate belonging to the genus Pleiocarpon was found and it is described here as a new species, Pleiocarpon algeriense, based on morphological features and DNA sequence data of the internal transcribed spacer region (ITS), translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), large subunit nrDNA (LSU) and histone H3 (his3). This is the first time that these species are reported in Algeria. Pathogenicity tests, were conducted with representative isolates from each species. All of them were able to induce typical necrosis symptoms on grapevine cuttings. These results emphasize the urgent need to implement an integrated management strategy for black foot disease in Algerian grapevine nurseries in order to reduce the incidence of this disease on grapevine planting material and to prevent that it spreads to new grapevine production areas.Much of this work was supported by the laboratory of the Grupo de Investigacion en Hongos Fitopatogenos, Instituto Agroforestal Mediterraneo (IAM), Universitat Politecnica de Valencia (UPV), Spain. W. Aigoun-Mouhous thanks the University of Blida for funding the research stay in Valencia, Spain. G. Elena was supported by the Spanish post-doctoral grant Juan de la Cierva-Formacion. A. Cabral was supported by Portuguese national funds through FundacAo para a Ciencia e a Tecnologia grant SFRH/BPD/84508/2012 and FCT Unit funding UID/AGR/04129/2013. This work was also supported by EFRR "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.02.1.01/0.0/0.0/16_025/0007314).Aigoun-Mouhous, W.; Elena-JimÃĐnez, G.; Cabral, A.; LeÃģn Santana, M.; Sabaou, N.; Armengol Fortí, J.; Chaouia, C.... (2019). Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov. European Journal of Plant Pathology. 154(4):887-901. https://doi.org/10.1007/s10658-019-01708-zS8879011544Abreo, E., Martinez, S., Bettucci, L., & Lupo, S. (2010). Morphological and molecular characterisation of Campylocarpon and Cylindrocarpon spp. associated with black foot disease of grapevines in Uruguay. Australasian Plant Pathology, 39(5), 446–452.Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261.Agustí-Brisach, C., Gramaje, D., García-JimÃĐnez, J., & Armengol, J. (2013). Detection of Blackfoot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137, 103–112.Agustí-Brisach, C., Mostert, L., & Armengol, J. (2014). Detection and quantification of Ilyonectria spp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316–322.Agustí-Brisach, C., Cabral, A., GonzÃĄlez-Domínguez, E., PÃĐrez-Sierra, A., LeÃģn, M., Abad-Campos, P., & Armengol, J. (2016). Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain, with description of Cylindrodendrum alicantinum sp. nov. European Journal of Plant Pathology, 145(1), 103–118.Aiello, D., Polizzi, G., Crous, P. W., & Lombard, L. (2017). Pleiocarpon gen. nov. and a new species of Ilyonectria causing basal rot of Strelitzia reginae in Italy. IMA Fungus, 8(1), 65–76.Alaniz, S., LeÃģn, M., Vicent, A., García-JimÃĐnez, J., Abad-Campos, P., & Armengol, J. (2007). Characterization of Cylindrocarpon species associated with black foot disease of grapevine in Spain. Plant Disease, 91(9), 1187–1193.Alaniz, S., Armengol, J., LeÃģn, M., García-JimÃĐnez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16–23.Alvarez, L.A., Tamayo, D., Castilla, C., Munive, J., Agustí-Brisach, C., Gramaje, D. & Armengol, J. (2012). Occurrence of grapevine trunk pathogens in nurseries and vineyards in the northern and southern coast of Peru. 8 th International Workshop on Grapevine Trunk Diseases, Valencia, 18-21, juin 2012.Ammad, F., Benchabane, M., & Toumi, M. (2014). Diversity of fungal trunk pathogens associated with grapevine dieback of grapevine in Algeria. Jordan Journal of Biological Sciences, 7, 35–39.Armengol, J., Vicent, A., García-JimÃĐnez, J., García-Figueres, F., & TornÃĐ, L. (2001). Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathologia Mediterranea, 40(40, 3), 1000–1005.Aroca, A., GarcÝa-Figueres, F., Bracamonte, L., Luque, J., & Raposo, R. (2006). A survey of trunk disease pathogens within rootstocks of grapevines in Spain. European Journal of Plant Pathology, 115(2), 195.Auger, J., Esterio, M., & PÃĐrez, I. (2007). First report of black foot disease of grapevine caused by Cylindrocarpon macrodidymum in Chile. Plant Disease, 91, 470.Badour, C. (1969). GangrÃĻne ou Pied noir. Le Vigneron Champenois, 5, 197–201.Berlanas, C., LÃģpez-Manzanares, B., & Gramaje, D. (2017). Estimation of viable propagules of black-foot disease pathogens in grapevine cultivated soils and their relation to production systems and soil properties. Plant and Soil, 417, 467–479.Berraf, A., & Peros, J. (2005). Importance of Eutypa dieback and esca in Algeria and structure of the associated fungal community. Journal International des Sciences de la Vigne et du Vin, 39(3), 121–128.Berraf-Tebbal, A., Bouznad, Z., Santos, J. M., Coelho, M., Peros, J. P., & Phillips, A. J. L. (2011). Phaeoacremonium species associated with Eutypa dieback and esca of grapevines in Algeria. Phytopathologia Mediterranea, 50(4), 86–97.Berraf-Tebbal, A., Guereiro, M. A., & Phillips, A. J. (2014). Phylogeny of Neofusicoccum species associated with grapevine trunk diseases in Algeria, with description of Neofusicoccum algeriense sp. nov. Phytopathologia Mediterranea, 53, 416–427.Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., Spagnolo, A., ClÃĐment, C., & Fontaine, F. (2013). Grapevine trunk diseases: complex and still poorly understood. Plant Pathology, 62(2), 243–265.Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012a). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116(1), 62–80.Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012b). Cylindrocarpon root rot: multi-gene analysis reveals novel species within Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.Carlucci, A., Francesco, L., Mostert, L., Halleen, F., & Raimondo, M. L. (2017). Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathologia Mediterranea, 56(1), 10–39.Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A., & Samuels, G. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.Crous, P. W., Gams, W., Stalpers, J. A., Robert, V., & Stegehuis, G. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology, 50, 19–12.Crous, P. W., Groenewald, J. Z., RisÃĻde, J.-M., Simoneau, P., & Hywel-Jones, N. L. (2004b). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–430.Crous, P. W., Verkley, G. J. M., Groenewald, J. Z., & Samson, R. A. (2009). CBS Laboratory manual series 1: Fungal biodiversity. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.Debray, F. (1892). Apoplexie de la vigne. Progres Agricole et Viticole, 17, 528–531.Dubrovsky, S., & Fabritius, A. L. (2007). Occurrence of Cylindrocarpon spp. in nursery grapevines in California. Phytopathologia Mediterranea, 46(1), 84–86.Fourie, P., & Halleen, F. (2001). Diagnosis of fungal diseases and their involvement in dieback disease of young vines. Wynboer, 149, 19–23.Fourie, P., & Halleen, F. (2004). Occurrence of grapevine trunk disease pathogens in rootstock mother plants in South Africa. Australasian Plant Pathology, 33(2), 313–315.Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.Garrido, L. D. R., SÃīnego, O. R., & Urben, A. F. (2004). Cylindrocarpon destructans causal agent of grapevine black-foot in Rio Grande do Sul. Fitopatologia Brasileira, 29(5), 548–550.Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Gramaje, D., & Armengol, J. (2011). Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Disease, 95(9), 1040–1055.Gramaje, D., & Di Marco, S. (2015). Identifying practices likely to have impacts on grapevine trunk disease infections: a European nursery survey. Phytopathologia Mediterranea, 54(2), 313–324.Gramaje, D., Armengol, J., Colino, M., Santiago, R., Moralejo, E., Olmo, D., Luque, J., & Mostert, L. (2009). First report of Phaeoacremonium inflatipes, P. iranianum and P. sicilianum causing Petri disease of grapevine in Spain. Plant Disease, 93, 964.Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease, 102(4), 12–39.Halleen, F., Crous, R., & Petrin, O. (2003). Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australasian Plant Pathology, 32(1), 47–52.Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. Nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology, 50(2), 431–455.Halleen, F., Schroers, H. J., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2006). Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines. Studies in Mycology, 55, 227–234.Hallenn, F., Fourie, P. H., & Crous, P. W. (2006). A review of black foot disease of grapevine. Phytopathologia Mediterranea, 45(4), 55–67.Hofstetter, V., Casieri, L., Viret, O., & Gindro, K. (2009). Esca de la vigne et communautÃĐ fongique. Revue suisse Vitic. Arboric. Hortic, 41, 247–253.Hofstetter, V., Dubuis, P. H., Zufferey, V., Fabre, A. L., Viret, O., & Gindro, K. (2017). Maladies du bois de la vigne: ÃĐtat des lieux et axes de recherche d’Agroscope. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 49(2), 88–96.Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.Larignon, P. (2012). Maladies cryptogamiques du bois de la vigne : symptomatologie et agents pathogÃĻnes. http://www.vignevin.com , 2-5.Larignon, P. (2016). Maladies cryptogamiques du bois de la vigne : symptomatologie et agents pathogÃĻnes. http://www.vignevin.com , 2ÃĻme ÃĐdition, 23-27.Levadoux, L., Benabderrabou, A., & Douaouri, B. (1971). Ampelographie algerienne; cepages de cuve et de table cultives en Algerie. p 118Lombard, L., Van Der Merwe, A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53(3), 515–532.Maluta, D., & Larignon, P. (1991). Pied-noir: mieux vaut prÃĐvenir. Viticulture, 11, 71–72.Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, New Orleans, LA, 14 Nov 2010, pp 1-8.Moncalvo, J. M., Wang, H. H., & Hseu, R. S. (1995). Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia, 87, 223–238.Mora-Sala, B., Cabral, A., LeÃģn, M., Agustí-Brisach, C., Armengol, J., & Abad-Campos, P. (2018). Survey, identification, and characterisation of Cylindrocarpon-like asexual morphs in Spanish forest nurseries. Plant Disease, 102, 2083–2100.Mugnai, L., Graniti, A., & Surico, G. (1999). Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Disease, 83, 404–418.Munive, J., Tamayo, D., Castilla, P.C., Agustí-Brisach, C., Gramaje, D., Armengol, J., & Alvarez, L.A. (2013). Especies de hongos de madera de vid asociados a infecciones de plantas en viveros y en campos en producciÃģn en el PerÚ XXII Congresso Peruano y XVII Congresso Latinoamericano de Fitopatologia. Lambayeque, PerÚ, 1–5, octubre 2013, 115–116.Nirenberg, H. (1976). Untersuchungen Þber die morphologische und biologische Differenzierung in der Fusarium-Section Liseola. Mitteilungen aus der Biologischen Bundesanstalt fÞr Land- und Forstwirtschaft, 169, 1–117.O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.O’Gorman, D. T., Haag, P., & Sholberg, P. L. (2009). News diseases causing decline of wine grapes in the Okanagan valley. In: Canadian plant disease survey. The Canadian Phytopathological Society, 90, 140–143.O'Donnell, K., Sarver, B. A., Brandt, M., et al. (2007). Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. Journal of Clinical Microbiology, 45, 2235–2248.Oliveira, H., Rego, M. C., & Nascimento, T. (2004). Decline of young grapevines caused by fungi. Acta Horticulturae, 652, 295–304.Özben, S., Demirci, F., Değirmenci, K., & Uzunok, S. (2012). First report of Cylindrocarpon macrodidymum associated with black foot diseases of grapevine in Turkey. Plant Disease, 96(5), 762–762.Petit, E., & Gubler, W. D. (2005). Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89, 1051–1059.Petit, E., Barriault, E., Baumgartner, K., Wilcox, W. F., & Rolshausen, P. E. (2011). Cylindrocarpon species associated with black-foot of grapevine in northeastern United States and southeastern Canada. American Journal of Enology and Viticulture, 62, 177–183.Ravaz, L. (1905). Sur la cause du dÃĐpÃĐrissement des vignes de la Tunisie, de l'AlgÃĐrie et du Midi de la France. (Ursache des ZurÞckgehens der Reben in Tunis, Algier und SÞdfrankreich): JSTOR.Rayner, R. W. (1970). A mycological colour chart. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society. Kew Surrey. United Kingdom.Rego, M. (1994). Nova e grave micose da videira em Portugal. Agente responsÃĄvel: Cylindrocarpon destructans (Zins.) Scholten. PublicaçÃĢo do LaboratÃģrio de Patologia Vegetal Veríssimo de Almeida, 67, 1–4.Rego, C., Oliveira, H., Carvalho, A., & Phillips, A. (2000). Involvement of Phaeoacremonium spp. and Cylindrocarpon destructans with grapevine decline in Portugal [Vitis vinifera L.]. Phytopathologia Mediterranea (Italy), 39, 76–79.Reis, P., Cabral, A., Nascimento, T., Oliveira, H., & Rego, C. (2013). Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathologia Mediterranea, 52(2), 335–346.Ridgway, H. J., Sleight, B. E., & Steward, A. (2002). Molecular evidence for the presence of Phaeomoniella chlamydospora in New Zealand nurseries, and its detection in rootstock mothervines using species-specific PCR. Australasian Plant Pathology, 31, 267–271.Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Rumbos, I., & Rumbou, A. (2001). Fungi associated with esca and young grapevine decline in Greece. Phytopathologia Mediterranea, 40(3), 330–335.Santos, R. F., Blume, E., Muniz, M. F. B., Heckler, L. I., Finger, G., & Maciel, C. G. (2014). First report of Ilyonectria macrodidyma associated with black foot disease of grapevine in Brazil. Plant Disease, 98, 156.Sweetingham, M. W. (1983). Studies on the nature of the pathogenicity of soil-borne Cylindrocarpon species. Ph. D. Thesis. University of Tasmania.Urbez-Torres, J. R. (2011). The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea, 50(4), 5–45.Úrbez-Torres, J. R., Haag, P., Bowen, P., & O’Gorman, D. T. (2014). Grapevine trunk diseases in British Columbia: incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant Disease, 98(4), 56–468.Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: conca-tenation software for the fast assembly of multigene data-sets with character set and codon information. Cladistics, 27(2), 171–180.Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246.Viret, O. & Gindro, K. (2014). La Vigne, vol. 1. Maladies fongiques. Editions AMTRA, Nyon, 255 p.White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols – a guide to methods and applications (pp. 315–322). Academic Press: New York.Whitelaw-Weckert, M. A., Nair, N. G., Lamont, R., Alonso, M., Priest, M. J., & Huang, R. (2007). Root infection of Vitis vinifera by Cylindrocarpon liriodendri in Australia. Australasian Plant Pathology, 36, 403–406

    Cadophora sabaouae sp. nov. and Phaeoacremonium Species Associated with Petri Disease on Grapevine Propagation Material and Young Grapevines in Algeria

    Full text link
    [EN] A field survey conducted on asymptomatic grapevine propagation material from nurseries and symptomatic young grapevines throughout different regions of Algeria yielded a collection of 70 Phaeoacremonium-like isolates and three Cadophora-like isolates. Based on morphology and DNA sequence data of I3-tubulin (tub2) and actin, five Phaeoacremonium species were identified including Phaeoacremonium minimum (22 isolates), Phaeoacremonium venezuelense (19 isolates), Phaeoacremonium parasiticum (17 isolates), Phaeoacremonium australiense (8 isolates), and Phaeoacremon bun ira nianu m (4 isolates). The latter two species (P. australiense and P. iranianum) were reported for the first time in Algeria. Multilocus phylogenetic analyses (internal transcribed spacer, tub2, and translation elongation factor 1-alpha) and morphological features, allowed the description of the three isolates belonging to the genus Cadophora (WAMC34, WAMC117, and WAMC118) as a novel species, named Cadophora sabaouae sp. nov. Pathogenicity tests were conducted on grapevine cuttings cultivar Cardinal. All the identified species were pathogenic on grapevine cuttings.This work was supported by the Ministerstvo Skolstvi, Mladeze a Telovychovy, Czech Republic under grant no. CZ-02-1-01/0-0/0-0/16-025/0007314, the Technologicka Agentura Ceske Republiky under grant no. TJ02000096, and the Spanish Government, Ramon y Cajal program under grant no. RYC-2017-23098 (to D. Gramaje).Aigoun-Mouhous, W.; Mahamedi, AE.; LeÃģn Santana, M.; Chaouia, C.; Zitouni, A.; Barankova, K.; Eichmeier, A.... (2021). Cadophora sabaouae sp. nov. and Phaeoacremonium Species Associated with Petri Disease on Grapevine Propagation Material and Young Grapevines in Algeria. Plant Disease. 105(11):3657-3668. https://doi.org/10.1094/PDIS-11-20-2380-RES365736681051

    Fungal Planet description sheets: 1383–1435

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Agaricus albofoetidus, Agaricus aureoelephanti and Agaricus parviumbrus on soil, Fusarium ramsdenii from stem cankers of Araucaria cunninghamii, Keissleriella sporoboli from stem of Sporobolus natalensis, Leptosphaerulina queenslandica and Pestalotiopsis chiaroscuro from leaves of Sporobolus natalensis, Serendipita petricolae as endophyte from roots of Eriochilus petricola, Stagonospora tauntonensis from stem of Sporobolus natalensis, Teratosphaeria carnegiei from leaves of Eucalyptus grandis × E. camaldulensis and Wongia ficherai from roots of Eragrostis curvula. Canada, Lulworthia fundyensis from intertidal wood and Newbrunswickomyces abietophilus (incl. Newbrunswickomyces gen. nov.)on buds of Abies balsamea. Czech Republic, Geosmithia funiculosa from a bark beetle gallery on Ulmus minor and Neoherpotrichiella juglandicola (incl. Neoherpotrichiella gen. nov.)from wood of Juglans regia. France, Aspergillus rouenensis and Neoacrodontium gallica (incl. Neoacrodontium gen. nov.)from bore dust of Xestobium rufovillosum feeding on Quercus wood, Endoradiciella communis (incl. Endoradiciella gen. nov.)endophyticin roots of Microthlaspi perfoliatum and Entoloma simulans on soil. India, Amanita konajensis on soil and Keithomyces indicus from soil. Israel, Microascus rothbergiorum from Stylophora pistillata. Italy, Calonarius ligusticus on soil. Netherlands , Appendopyricularia juncicola (incl. Appendopyricularia gen. nov.), Eriospora juncicola and Tetraploa juncicola on dead culms of Juncus effusus, Gonatophragmium physciae on Physcia caesia and Paracosmospora physciae (incl. Paracosmospora gen. nov.)on Physcia tenella, Myrmecridium phragmitigenum on dead culm of Phragmites australis, Neochalara lolae on stems of Pteridium aquilinum, Niesslia nieuwwulvenica on dead culm of undetermined Poaceae, Nothodevriesia narthecii (incl. Nothodevriesia gen. nov.) on dead leaves of Narthecium ossifragum and Parastenospora pini (incl. Parastenospora gen. nov.)on dead twigs of Pinus sylvestris. Norway, Verticillium bjoernoeyanum from sand grains attached to a piece of driftwood on a sandy beach. Portugal, Collybiopsis cimrmanii on the base of living Quercus ilex and amongst dead leaves of Laurus and herbs. South Africa , Paraproliferophorum hyphaenes (incl. Paraproliferophorum gen. nov.) on living leaves of Hyphaene sp. and Saccothecium widdringtoniae on twigs of Widdringtonia wallichii. Spain, Cortinarius dryosalor on soil, Cyphellophora endoradicis endophytic in roots of Microthlaspi perfoliatum, Geoglossum laurisilvae on soil, Leptographium gemmatum from fluvial sediments, Physalacria auricularioides from a dead twig of Castanea sativa , Terfezia bertae and Tuber davidlopezii in soil. Sweden, Alpova larskersii, Inocybe alpestris and Inocybe boreogodeyi on soil. Thailand, Russula banwatchanensis, Russula purpureoviridis and Russula lilacina on soil. Ukraine, Nectriella adonidis on over wintered stems of Adonis vernalis. USA, Microcyclus jacquiniae from living leaves of Jacquinia keyensis and Penicillium neoherquei from a minute mushroom sporocarp. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets: 1383-1435

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Australia, Agaricus albofoetidus, Agaricus aureoelephanti and Agaricus parviumbrus on soil, Fusarium ramsdenii from stem cankers of Araucaria cunninghamii, Keissleriella sporoboli from stem of Sporobolus natalensis, Leptosphaerulina queenslandica and Pestalotiopsis chiaroscuro from leaves of Sporobolus natalensis, Serendipita petricolae as endophyte from roots of Eriochilus petricola, Stagonospora tauntonensis from stem of Sporobolus natalensis, Teratosphaeria carnegiei from leaves of Eucalyptus grandis x E. camaldulensis and Wongia ficherai from roots of Eragrostis curvula. Canada, Lulworthia fundyensis from intertidal wood and Newbrunswickomyces abietophilus (incl. Newbrunswickomyces gen. nov.)on buds of Abies balsamea. Czech Republic, Geosmithia funiculosa from a bark beetle gallery on Ulmus minor and Neoherpotrichiella juglandicola (incl. Neoherpotrichiella gen. nov.)from wood of Juglans regia. France, Aspergillus rouenensis and Neoacrodontium gallica (incl. Neoacrodontium gen. nov.)from bore dust of Xestobium rufovillosum feeding on Quercus wood, Endoradiciella communis (incl. Endoradiciella gen. nov.)endophyticin roots of Microthlaspi perfoliatum and Entoloma simulans on soil. India, Amanita konajensis on soil and Keithomyces indicus from soil. Israel, Microascus rothbergiorum from Stylophora pistillata. Italy, Calonarius ligusticus on soil. Netherlands , Appendopyricularia juncicola (incl. Appendopyricularia gen. nov.), Eriospora juncicola and Tetraploa juncicola on dead culms of Juncus effusus, Gonatophragmium physciae on Physcia caesia and Paracosmospora physciae (incl. Paracosmospora gen. nov.)on Physcia tenella, Myrmecridium phragmitigenum on dead culm of Phragmites australis, Neochalara lolae on stems of Pteridium aquilinum, Niesslia nieuwwulvenica on dead culm of undetermined Poaceae, Nothodevriesia narthecii (incl. Nothodevriesia gen. nov.) on dead leaves of Narthecium ossifragum and Parastenospora pini (incl. Parastenospora gen. nov.)on dead twigs of Pinus sylvestris. Norway, Verticillium bjoernoeyanum from sand grains attached to a piece of driftwood on a sandy beach. Portugal, Collybiopsis cimrmanii on the base of living Quercus ilex and amongst dead leaves of Laurus and herbs. South Africa , Paraproliferophorum hyphaenes (incl. Paraproliferophorum gen. nov.) on living leaves of Hyphaene sp. and Saccothecium widdringtoniae on twigs of Widdringtonia wallichii. Spain, Cortinarius dryosalor on soil, Cyphellophora endoradicis endophytic in roots of Microthlaspi perfoliatum, Geoglossum laurisilvae on soil, Leptographium gemmatum from fluvial sediments, Physalacria auricularioides from a dead twig of Castanea sativa , Terfezia bertae and Tuber davidlopezii in soil. Sweden, Alpova larskersii, Inocybe alpestris and Inocybe boreogodeyi on soil. Thailand, Russula banwatchanensis, Russula purpureoviridis and Russula lilacina on soil. Ukraine, Nectriella adonidis on over wintered stems of Adonis vernalis. USA, Microcyclus jacquiniae from living leaves of Jacquinia keyensis and Penicillium neoherquei from a minute mushroom sporocarp. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets : 1182–1283

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand, Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA, Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes.http://www.ingentaconnect.com/content/nhn/pimjBiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc
    • â€Ķ
    corecore