
Northumbria Research Link

Citation: Mahamedi, Elham, Rogage, Kay, Doukari, Omar and Kassem, Mohamad (2021)
Automating equipment productivity measurement using deep learning. In: Proceedings of
the  2021  European  Conference  on  Computing  in  Construction.  Computing  in
Construction, 2 . University College Dublin, Dublin, pp. 140-147. ISBN 9783907234549 

Published by: University College Dublin

URL: https://doi.org/10.35490/ec3.2021.153 <https://doi.org/10.35490/ec3.2021.153>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/48886/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


` 2021 European Conference on Computing in Construction  

                           Online eConference 

  July 26-28, 2021 

 

 

ABSTRACT 

Site equipment represent a major cost element in 

construction projects. Measuring equipment productivity 

help to identify equipment inefficiencies and improve 

their productivity; however, measurement processes are 

time and resource intensive. Current literature has focused 

on automating equipment activity capture but still lack 

adequate approaches for measurement of equipment 

productivity rates. Our contribution is to present a 

methodology for automating equipment productivity 

measurement using kinematic and noise data collected 

through smartphone sensors from within equipment and 

deep learning algorithms for recognizing equipment 

states. The testing of the proposed method in a real world 

case study demonstrated very high accuracy of 99.78% in 

measuring productivity of an excavator. 

INTRODUCTION 

Equipment productivity is a factor that affects the success 

of construction projects, particularly equipment-intensive 

projects such as earth-moving, pavement and tunnel 

projects. Construction equipment productivity has been 

studied by many researchers (Ok and Sinha, 2006, Gurmu 

and Aibinu, 2017) and (Gerami Seresht and Fayek, 2018)) 

to improve the overall construction productivity and 

reduce project time and cost. To improve productivity, it 

must be measured and monitored throughout the project 

execution phase to identify equipment inefficiencies and 

their root causes. However, collecting the required data 

for equipment performance monitoring is time and 

resource consuming (Chen et al., 2020). Manual data 

collection particularly, is error prone and impracticable in 

large projects (Kim et al., 2018). This demonstrates the 

need for automating the process of equipment data 

collection, measuring and benchmarking their 

productivity, and monitoring their performance in large 

construction projects.  

The recent advancement in the equipment technology 

can provide some useful information about different 

aspects of the equipment performance. However, many 

companies still use the equipment without such 

technologies and need to adopt other methods for 

monitoring their equipment performance. The aim of this 

paper is to propose a method for automating the collection 

of key data about equipment operation and the 

measurement of their productivity using low-cost 

smartphone sensors and deep learning techniques. This 

paper first outlines the equipment productivity metrics 

from the usage time aspect. Then, the studies related to 

automating equipment activity recognition and 

productivity measurement are described. In the next 

sections, the proposed methodology is presnted and 

demosntrated in a real case study. Then, discussions on 

the research findings, limitations and future work along 

with the conclusion are provided in the last sections. 

EQUIPMENT PRODUCTIVITY METRICS 

Productivity is generally defined as the ratio of output 

over input. Different metrics have been proposed to 

measure equipment productivity and evaluate efficiency 

of equipment usage. For instance, some metrics have 

accounted for downtime for evaluating equipment 

productivity. Vorster and De La Garza (1990) defined the 

downtime ratio (Z) for equipment over a month, as shown 

in Equation (1): 
 

 𝑍(%) =
𝐷

𝐷 + 𝑊
× 100 (1) 

 
where D is the number of hours a particular equipment 

unit is broken down in a month, and W is the total number 

of hours worked by the equipment in the month.  

Nepal and Park (2004) defined equipment downtime (DT) 

ratio as follows: 
 

𝐷𝑇(%) =
Total DT hours

Total planned working hours 
× 100 (2) 

 
Equipment availability is another metric, which accounts 

for the percentage of time that an equipment unit is 

available for operation, but it can be measured out of 24 

hours, or out of the shift time that the equipment was 

scheduled to operate as proposed by (Ibbs Jr and Terveer, 

1984) in Equation (3) for the utilization ratio (UR): 
 

𝑈𝑅(%) =
Total working time

Total available time 
× 100 (3) 

 
By measuring such metrics for different types of 

equipment, productivity benchmarks can be produced and 

used for project monitoring to identify underperforming 
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equipment. Then, the issues causing underperformance of 

equipment can be investigated and addressed to improve 

their productivity. 

RELATED STUDIES  

Several studies have been carried out to recognize equip-

ment activities, determine their activity duration, and 

identify their operation cycle time through automated data 

capture. Montaser and Moselhi (2012) proposed an ap-

proach for tracking earthmoving operations using Radio 

Frequency Identification (RFID). Their approach could 

automatically recognize four states of the trucks including 

loading, travelling, dumping and returning.  As this ap-

proach uses fixed RFID readers for gate systems at the 

loading and dumping areas, it is more relevant to projects 

with fixed loading and dumping areas. Moreover, this ap-

proach cannot identify the waiting time of the trucks in 

the loading/dumping areas. In another study, Montaser 

and Moselhi (2014) developed an automated system inte-

grating Global Positioning System (GPS) and Geograph-

ical Information System (GIS). This system tracks the lo-

cation of the trucks using GPS units mounted on the trucks 

and identifies the spatial boundaries of loading and dump-

ing areas using GIS. Similar to their previous approach, 

they recognized the same four states for the trucks and 

lacks the capability of capturing waiting times in the load-

ing/dumping areas. To address this drawback and to im-

prove accuracy of measuring excavated soil volume, 

Ibrahim and Moselhi (2014) developed an automated 

productivity assessment method for earthmoving opera-

tions. In this method, they used mobile sensors including 

GPS mounted on trucks to track their locations, accel-

erometers mounted on the bed of the trucks for tilt sensing 

of the truck bed, strain gauges mounted on truck leaf 

springs to measure soil weight, barometric pressure sen-

sors attached to the bucket of loaders to measure elevation 

of the buckets, and RF module, which used Bluetooth for 

data transfer and proximity detection between equipment. 

They developed an algorithm to use the collected data 

from these sensors for the truck activity recognition in-

cluding load queue, load, travel, dump queue, dump, re-

turn and service. The developed method measured 

productivity with only 2.2% error in a case study. Despite 

its high accuracy and simplicity of its computational re-

quirements, implementation of this method needs instal-

lation of several sensors on the trucks and loaders, which 

are not often allowed by the equipment owners.  

Ahn et al. (2012) utilised an accelerometer mounted 

inside the cabin of a medium-sized excavator collecting 

the data with the frequency of 100 Hz. They presented the 

relationship between operational efficiency and 

environmental performance using vibration signals. A 

further study by Ahn et al. (2015) explored capturing  

acceleration signals from four types of excavators using 

an accelerometer mounted inside the cabin and conducted 

the experiment under an instructed environment. The 

experiment involved the operation of an excavator that 

a in was strictly instructed to capture the required dat

They  order to analyze patterns of accelerometer data.

used different supervised classifiers including Naïve 

nearest neighbor -based learning, K-Bayes, Instance

(KNN) and Decision tree (J48) and achieved over 93% 

.operationfor classification of excavators' accuracy   

One study explored approaches to detecting loading and 

unloading of a dumper truck with a remote tracking 

technique using 3-axis magnetic field sensing and 3-axis 

tilt sensing for a loader and a truck in an indoor laboratory 

(Akhavian and Behzadan, 2012). Akhavian and Behzadan 

(2015) also developed an automated method to detect 

equipment activities and their durations for simulation 

input modeling of a front-end loader using GPS sensor, 3-

axis accelerometer, and 3-axis gyroscope with frequency 

of 100 Hz. This technique applied several supervised 

learning methods including logistic regression, K-NN, 

decision tree, neural network, support vector machine 

(SVM), and achieved an overall accuracy of more than 

86%.  

Some studies used Inertial Measurement Unit (IMU) 

data from the sensors embedded in smartphones including 

accelerometers and gyroscopes for equipment activity 

recognition. For instance, Kim et al. (2018) measured an 

excavator operation cycle time using IMU data with the 

frequency of 128 Hz. They applied Random Forest, Naïve 

Bayes, J48 and Sequential Minimal Optimization (SMO) 

for the cycle time prediction and achieved 91.83% 

accuracy. In another study Rashid and Louis (2019) used 

time-series data augmentation on 3-axis accelerometer, 

and 3-axis gyroscope data collected with the frequency of 

80 Hz to generate synthetic training data for four  types of 

excavator and front-end loader. This technique applied 

recurrent neural network (RNN) and achieved over 96% 

accuracy for fourfold augmentation. 

Bae et al. (2019) developed a dynamic time warping 

algorithm for activity identification and automatic 

classification of excavator activities (i.e., digging, 

leveling, lifting, trenching, traveling, and idling) using 

joysticks signals. The correct-recognition rate of their 

model was between 91% and 97%. 

Despite the contributions these studies bring to 

monitoring construction equipment activity, there is still 

a dearth of studies attempting to automate equipment 

productivity measurement. A recent attempt in this area 

by Chen et al. (2020) developed a vision-based method 

for measuring excavator productivity. However, this 

method revealed computationally complex and had some 

limitations such as dependency of the results on the light 

conditions, viewpoints of cameras, number of equipment 

in the scene and background movements. In addition, 

their achieved accuracy was 83% for productivity 

measurement, and 94% for idle time measurement. This 

study contributes to this research domain by developing 

and testing a low-cost and simple-to-implement method 

for automating equipment productivity measurement with 

high accuracy using smartphone sensors. 



METHODOLOGY 

As discussed earlier, a range of metrics for measuring 

equipment productivity exist. In this paper we explore the 

metric utilization ratio (Equation 3) for measuring 

productivity. The main focus is on identifying whether or 

not an equipment is working during the time that it is 

available for use during the operation shift. Accordingly, 

two states for the equipment are defined: 1) active and 2) 

inactive. Active state relates to the time that the equipment 

is actively working. Inactive state relates to the time that 

the equipment is not working including the idle time and 

the time the equipment engine is off.   

Smartphones are used for capturing IMU data (i.e., tri-

axial accelerometer, gyroscope and linear acceleration 

data) and noise level data from inside the equipment 

operators’ cabins.  Figure 1 illustrates how these data are 

used to identify equipment states. 
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Figure 1: Modeling Process 

 

As seen in Figure 1, the first step is to collect the required 

data. In this study, different types of smartphone sensor 

data including kinematics and noise level are captured. 

Smartphone sensor data are captured using a commercial 

application available on the phones. The application 

utilizes built-in smartphone sensors to capture IMU data 

and the noise level. In addition, a camera is used to 

capture videos from equipment activities on the 

construction site to identify when the equipment is active 

or inactive. Further, the videos are used for labeling the 

time-stamped sensor data and developing and validating 

machine learning models. 

The second step is data preprocessing, in which 

sliding windows to divide input signal data into windows 

of signals are identified. The size of each sliding window, 

which depends on the model specifications such as the 

data type and nature of the activities to be classified, 

impacts the model size and training speed: the smaller the 

window size, the smaller the model and the faster the 

training speed (Banos et al., 2014). That is, reducing the 

window size enables faster activity recognition and less 

computational burdens. Large windows are generally 

used for identifying complex activities (Banos et al., 

2014). After selecting a suitable sliding window size, the 

data is labeled with the equipment states (i.e., either active 

or inactive) using the observations from the captured 

videos. 

The preprocessed data are then fed to the deep 

learning model for classification. Deep learning 

algorithms are more suitable for complex activity 

recognition because they automate feature engineering 

and extraction (as one of the most important and 

challenging tasks in machine learning) and extract high-

level representation in deep layers (Wang et al., 2019).  

In this study three deep learning algorithms including 

Deep Neural Network (DNN), Convolutional Neural Net-

work-Long Short-Term memory network (CNN-LSTM) 

and Convolutional Long Short-Term Memory (Conv-

LSTM) were experimented. These algorithms are com-

monly used for activity recognition due to their deep 

structures for automated feature extractions from raw sen-

sor data with random noises (Mahmud et al., 2020). These 

algorithms are applied to a various combination of data 

collected in a case study to compare their performance in 

predicting equipment states and measuring equipment 

productivity. The description of these algorithms is sum-

marized below.  

Deep Neural Network (DNN) 

DNN map inputs to outputs through a sequence of data 

transformations (layers). In the learning process of DNN, 

the values of the parameters (weights) of the layers are 

identified in such a way that the network correctly maps 

the input data to output data (i.e., minimizing the error) 

(Francois, 2017). DNN is computationally complex be-

cause many parameters exist for each layer and a change 

in one parameter will impact other parameter behaviors 

(Francois, 2017).  More (deep) layers in DNN comparing 

to the traditional neural networks, make it a more suitable 

method for building a learning model from a large amount 

of data, where manually extracting features is too com-

plex  

or time consuming for building a successful model. 

In DNN, different types of layers such as dense, flat-

ten, dropout and softmax layers can be used. Dense layers 

are a regular neuron layer, which are densely connected 

and receive input from the previous layer and send output 

to the next layer. The input and output are also connected 

by the weights. Flatten layers are used to make multidi-

mensional output linear to pass it to the dense layer when 



required. Dropout is a regularization method, which ran-

domly (at a probability) drops some neurons to prevent 

overfitting the model. Softmax can be used before the out-

put layer to output a probability distribution over the dif-

ferent output classes, which identifies the probability that 

the sample belongs to a specific class (Francois, 2017).  

Figure 2 (a) depicts the architecture of the DNN model 

created in this study. 

Convolutional Neural Network-Long Short-Term 

memory network (CNN-LSTM) 

CNN-LSTM integrates Convolutional Neural Network 

(CNN) with long short-term memory network (LSTM). 

CNNs are characterized by the ability of easy training, 

knowledge extraction and feature extraction on input data 

(Huang and Kuo, 2018). CNNs are mostly adopted for im-

age processing. LSTM is a type of Recurrent neural net-

works (RNNs), which are used to learn from sequence 

data (i.e., sequences of observations over time) and can 

address some difficulties of RNN in training a stable 

model (Brownlee, 2016). LSTM develops internal repre-

sentation of the input while reading input observations in 

sequence and focusing on model prediction errors in the 

input sequence in each time step, which is called back 

propagation over time (Brownlee, 2016). 

In the CNN-LSMT architecture, 1) CNN performs 

feature extraction on input data through convolutional 

layers (e.g. Conv1D), which performs convolution opera-

tions to learn local patterns (while dense layers learn 

global patterns) (Francois, 2017), and pooling layers, 

which performs a down sampling operation to produce the 

most significant features (Swapna et al., 2018), and 

LSTM supports sequence prediction, 2) data are read se-

quentially in blocks and features are extracted from each 

block, and 3) the extracted features are fed into LSTM for 

interpretations and  

predictions (Brownlee, 2018). CNN-LSTM is more effi-

cient for recognition of activities with differing time spans 

such as visual time series prediction problems. As CNN 

is a specific type of DNN, DNN layers can also be used 

in CNN-LSTM models. Figure 2 (b) demonstrates the ar-

chitecture of the CNN-LSTM model used in this study.  

Convolutional Long Short-Term Memory (Conv-

LSTM) 

Conv-LSTM is an extension of fully connected LSTM 

(FC-LSTM) by having convolutional structures for 

LSTM gating in both the input-to-state and state-to-state  

transitions (Xingjian et al., 2015).  In Conv-LSTM, an ex-

tra connection with the previous memory cells is estab-

lished to account for the effect of the previous input in the 

current timestamp (Xingjian et al., 2015). 

In the training process, the memory cell can consider the  

effect of the earliest stages (Rahman and Adjeroh, 2019). 

The main difference between CNN-LSTM and Conv-

LSTM is that in CNN-LSTM, LSTM interprets the output 

from CNN model but in Conv-LSTM, the convolutions 

are used directly as part of reading input into LSTM 

(Brownlee, 2018). Conv-LSTM is suitable for predictions 

on 3-dimensional data (e.g., spatiotemporal data).  

In this study, a special form of Conv-LSTM, so called 

Conv-LSTM 2D, which combines gating of LSTM with 

2D convolutions, was used. The overall architecture of the 

model used in this study is presented in Figure 2 (c).  

TESTING AND DEMONSTRATION 

The proposed method was implemented on a live demoli-

tion project where a Komatsu PC220LC Hydraulic Exca-

vator was in use. A commercial mobile app was used to 

collect noise level and IMU data including accelerometer, 

gyroscope and linear acceleration data in three-dimen-

sional axes. Two android smartphones were mounted in-

side the cabin of the excavator on the window to mitigate 

the risk of losing data due to the risk of the app crashing 

on one phone or other incidents. The frequency of data 

capturing was 8 Hz, which was the highest frequency at 

which the commercial app could run and capture data 

without crashing. A camera was used to capture the video 

and approximately 3 hours of the excavator operation was 

monitored. Figure 3 shows a snapshot of the captured 

video. As mentioned in the methodology section, this 

study intends to automatically measure the utilization ra-

tio by recognizing two states of the equipment: active and 

inactive. During the monitored time, the excavator was 

mostly active working on demolishing a building. There 

were some occasions that the excavator operator stopped 

working for a short period of time, which was considered  

inactive time. Figures 4 to 7 show a sample of accelerom-

eter, gyroscope, linear acceleration and noise level data 

when the excavator was active and inactive. The collected 

data were then preprocessed. The sliding window size was 

decided as five seconds as only two states that are not 

Conv1d

Input: Smartphone 

Sensor Data

Output: 

Excavator States

(b)

Dropout Max 

Pooling
Flatten LSTM Dense Softmax

Dense

Input Output(a)

Dense Dense Flatten Softmax

ConvLSTM2D

Input Output

(c)

Dropout Flatten Dense Dense

Dropout

Figure 2: (a) DNN model architecture; (b) CNN-LSTM model architecture; (c) Conv-LSTM model architecture 

https://www.ritchiespecs.com/model/komatsu-pc220lc-6-hydraulic-excavator
https://www.ritchiespecs.com/model/komatsu-pc220lc-6-hydraulic-excavator


complex in nature were considered for activity recogni-

tion. Since frequency of data was 8 Hz, 40 data sets were 

available for each window. These data sets were labeled 

using the captured video.  
 

 

Figure 3: A snapshot of the captured video 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Sample of accelerometer data in x, y and z axis for 

active and inactive states 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Sample of linear accelerometer data in x, y and z 

axis for active and inactive states 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Sample of gyroscope data in x, y and z axis for ac-

tive and inactive states 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Sample of noise level data for active and inactive 

states 
 

Three deep learning models using DNN, CNN-LSTM and 

Conv-LSTM algorithms were created using Keras deep 

learning pacakge, a free open source library in Python, 

with Tensor-Flow as a backend engine. The models were 

created for three combinations of data: 

• Accelerometer and gyroscope data 

• Accelerometer, gyroscope and linear 

acceleration data 

• Accelerometer, gyroscope data, linear 
acceleration and noise level data 

The train/test ratio of 75/25 was used for splitting the 

dataset into train and test sets. Then, 80% of the train 

dataset was used as the actual train set and the remaining 

20% was used as the validation set. After that, the model 

is  iteratively trained and validated on these different sets. 

The accuracy was calculated as the number of correct 

predictions over the total number of predictions Equation 

4. 

 



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 
where TP is True Positive, TN is True Negative, FP is 

False Positive, and FN is False Negative. 

Table 1 shows the accuracy of experimented models for 

activity recognition. 
 

Table 1: Accuracy for activity recognition 

Input Data 

Model Accuracy (%) 

DNN 
CNN-

LSTM 

Conv-

LSTM  

Accelerometer and gyroscope 

data 

 97.25% 96.93% 96.85% 

Accelerometer, gyroscope and 

linear acceleration data 

 97.17% 96.77% 97.01% 

Accelerometer, gyroscope 

data, linear acceleration and 

noise level data 

 97.01% 96.70% 97.01% 

 
The actual utilization ratio was measured manually as 

89.85% using the captured video. Using the result of the 

models, the utilization ratio can be  automatically 

calculated  as shown in Table 2, and accuracy of the 

models was calculated by comparing it with the actual 

utilization ratio as shown in Table 3.  
 

Table 2: Predicted utilization ratio 

Input Data 

Predicted Utilization Ratio (%) 

DNN 
CNN-

LSTM 

Conv-

LSTM  

Accelerometer and gyroscope 

data 

91.08% 91.36% 90.13% 

Accelerometer, gyroscope and 

linear acceleration data 

91.26% 92.34% 90.17% 

Accelerometer, gyroscope 

data, linear acceleration and 

noise level data 

90.04% 91.37% 91.45% 

 
Table 3: Accuracy for measuring utilization ratio 

Input Data 

Model Accuracy (%) 

DNN CNN-

LSTM 

Conv-

LSTM 

Accelerometer and gyroscope 

data 

98.63% 98.31% 99.68% 

Accelerometer, gyroscope and 

linear acceleration data 

98.43% 97.22% 98.53% 

Accelerometer, gyroscope 

data, linear acceleration and 

noise level data 

99.78% 99.42% 98.21% 

 
 
 
 
 
 

DISCUSSION 

The developed model resulted in high accuracy for both 

activity recognition and productivity measurement. This 

accuracy can be attributed to capabilities of deep learning 

algorithms in feature engineering when large amount of 

data is available. Another contributor to this high 

accuracy comparing to similar studies (e.g., Ahn et al. 

(2015) with 93% accuracy and Kim et al. (2018) with 

91.83% accuracy), is the lower level of details required 

for productivity measurement as this study considered 

two states (active and inactive) for the activity 

recognition. Although the accuracy levels are very high, 

they can be improved further with a larger amount of 

training data by increasing the frequency and/or duration 

of data collection. In this case study, DNN model using 

accelerometer and gyroscope data led to the highest 

accuracy (97.25%) for activity recognition. For 

productivity measurement, DNN using accelerometer, 

gyroscope data, linear acceleration and noise level data 

achieved the highest accuracy (99.78%). However, the 

variations of the achieved accuracies are insignificant 

among the models and the input combinations (less than 

1% for activity recognition and less than 3% for 

productivity measurement), which could be because of 

the low level of  details required for predictions. If a 

higher level of details  is considered, more variation could 

be observed to be able to compare capabilities of different 

algorithms and the impact of input data. In this case study, 

the excavator was doing only one type of activity (i.e., 

building demolition). 

To enhance application of the model, other types of 

activities such as excavation and loading can be studied to 

make the model more generic for excavator operations.  

The main advantage of this method over other methods 

(e.g., vision-based methods and using other types of 

sensors) is that it is computationally less complicated, and 

inexpensive to implement. It is also relatively more 

accurate. For instance, the study by Chen et al. (2020) 

used a vision-based method and could achieve 93.8% 

accuracy for measuring idle time, which is similar to the 

inactive state in this study. Table 4 shows a detailed 

comparison between this study and other studies.  

LIMITATIONS AND FUTURE WORK  

This study has some limitations that can be addressed in 

future. In the case study, the excavator activities were 

limited to demolition tasks. The proposed method can be 

experimented for other types of excavator activities such 

as excavation and loading to further substantiate its 

capabilities. As such, more complex activity recognition 

with more states maybe required to study more detailed 

equiepment operation efficiency. 

In this study, a commercial mobile application was used 

for capturing the data. The used application had 

limitations on the data capture frequency. The highest 

frequency rate to avoid crashing the application was 8 Hz 

while in similar studies higher rates were used. Despite  



this limitation, the accuracy of the model in the case study 

was very high. In future studies, the impact of data capture 

frequency on the accuracy of the model can be explored.  

In addition, the capability of this method can be further 

explored by experimenting other types of equipment such 

as loaders and cranes.   

CONCLUSIONS 

In this study, a deep learning method was proposed for 

automating equipment productivity measurement. This 

method uses kinematic and noise level data captured by 

smartphone sensors. Three deep learning algorithms 

including DNN, CNN-LSTM, and Conv-LSTM were 

experimented for activity recognition of an excavator and 

measuring productivity.  

The results of the experiment showed high accuracy 

of the models (over 96.70% for activity recognition and 

over 97.22% for productivity measurement). The 

equipment-intensive construction project can benefit from 

the proposed method by measuring equipment 

productivity, producing benchmarks, and comparing the 

equipment performance with the benchmarks. 

Automating this process assists project managers to 

identify equipment inefficiencies in near real-time and to 

stimulate corrective actions to address the root causes of 

lagging performance; hence contributing to improve 

equipment productivity and reducing project time and 

costs. 
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