102 research outputs found

    Limnological changes and chironomid-inferred summer air temperature from the Late Pleniglacial to the Early Holocene in the East Carpathians

    Get PDF
    Here we provide the first chironomid record and associated summer air-temperature (T VII ) reconstruction between ca. 16,800-9100 cal yr BP from Lake Saint Anne (SZA), situated in the Eastern Carpathians. SZA was formed by the youngest volcanic eruption of Ciomadul volcano at ca. 29,600 cal yr BP. Our main goals in this study are to test whether warming after Heinrich event 1 (H1; ca. 16,200 cal yr BP) had similar amplitude to the late glacial warming, while Younger Dryas (YD) summers remained relatively warm in this region of Europe. We found the most remarkable chironomid assemblage change with a T VII increase of ~3.5-3.8°C at ca. 16,350 cal yr BP at SZA, followed by another slight T VII increase of ~0.8-1.0°C at ca. 14,450 cal yr BP. Only very minor temperature variations were recorded between 14,450 cal yr BP and 11,700 cal yr BP, with an unexpected T VII decrease in the Early Holocene. Variations in water depth together with increasing analogue problems and paludification from ca. 14,200 cal yr BP onwards may have influenced the reliability of our paleotemperature record obtained from SZA. In addition, Sphagnum -indicated decreasing pH, and hence decreasing nutrient level, likely overrode the effect of summer air-temperature changes during the Early Holocene, and this may explain the bias in the chironomid-inferred summer air-temperature reconstruction in the Early Holocene section

    Diatom-based evidence for abrupt climate changes during the Late Glacial in the Southern Carpathian Mountains

    Get PDF
    Abstract A high-resolution paleolimnological record from Lake Brazi (TDB-1; 45°23’47″N, 22°54’06″E, 1740 m a.s.l.), a small, glacial lake in the Retezat (South Carpathian Mountains, Romania) provides a sensitive record of the impacts of late glacial climatic change on siliceous algal assemblages. The sequence, ranging from 15,700 cal yr BP to 9500 cal yr BP, suggests that the most significant changes in diatom assemblages took place at 12,800 and 10,400 cal yr BP, when alkaliphilous fragilarioid taxa were replaced by acidophilous diatoms. Altogether eight zones were distinguished with sharp and rapid changes of diatom assemblages. The paper discusses the application of siliceous algae in multi-proxy paleolimnological analyses, demonstrates the advantages and disadvantages of this proxy and presents the story of floristic discovery of unique diatom assemblages, the closest recent analogs of which are found in the arctic region

    Radiocarbon chronology of glacial lake sediments in the Retezat Mts (South Carpathians, Romania): a window to Late Glacial and Holocene climatic and paleoenvironmental changes

    Get PDF
    Abstract the Retezat Mountains, this study discusses radiocarbon chronology and sediment accumulation rate changes in two sediment profiles in relation to lithostratigraphy, organic content, biogenic silica and major pollenstratigraphic changes. A total of 25 radiocarbon dates were obtained from sediments of two lakes, Lake Brazi (TDB-1; 1740 m a.s.l.) and Lake Gales (Gales-3; 1990 m a.s.l.). Age-depth modeling was performed on TDB-1 using calibrated age ranges from BCal and various curve-fitting methods in psimpoll. Our results suggest that sediment accumulation began between 15,124–15,755 cal yr BP in both lakes and was continuous throughout the Late Glacial and Holocene. We demonstrated that local ecosystem productivity showed delayed response to Late Glacial and Early Holocene climatic changes in the subalpine and alpine zones most likely attributable to the cooling effect of remnant glaciers and meltwater input. However, regional vegetation response was without time lag and indicated forestation and warming at 14,450 and 11,550 cal yr BP, and cooling at ca. 12,800 cal yr BP. In the Holocene one major shift was detected, starting around 6300 cal yr BP and culminating around 5200 cal yr BP. The various proxies suggested summer cooling, shorter duration of the winter ice-cover season and/or increasing size of the water body, probably in response to increasing available moisture

    Population dynamics and genetic changes of Picea abies in the South Carpathians revealed by pollen and ancient DNA analyses

    Get PDF
    Background: Studies on allele length polymorphism designate several glacial refugia for Norway spruce (Picea abies) in the South Carpathian Mountains, but infer only limited expansion from these refugia after the last glaciation. To better understand the genetic dynamics of a South Carpathian spruce lineage, we compared ancient DNA from 10,700 and 11,000-year-old spruce pollen and macrofossils retrieved from Holocene lake sediment in the Retezat Mountains with DNA extracted from extant material from the same site. We used eight primer pairs that amplified short and variable regions of the spruce cpDNA. In addition, from the same lake sediment we obtained a 15,000-years-long pollen accumulation rate (PAR) record for spruce that helped us to infer changes in population size at this site.Results: We obtained successful amplifications for Norway spruce from 17 out of 462 pollen grains tested, while the macrofossil material provided 22 DNA sequences. Two fossil sequences were found to be unique to the ancient material. Population genetic statistics showed higher genetic diversity in the ancient individuals compared to the extant ones. Similarly, statistically significant Ks and Kst values showed a considerable level of differentiation between extant and ancient populations at the same loci.Lateglacial and Holocene PAR values suggested that population size of the ancient population was small, in the range of 1/10 or 1/5 of the extant population. PAR analysis also detected two periods of rapid population growths (from ca. 11,100 and 3900 calibrated years before present (cal yr BP)) and three bottlenecks (around 9180, 7200 and 2200 cal yr BP), likely triggered by climatic change and human impact.Conclusion: Our results suggest that the paternal lineages observed today in the Retezat Mountains persisted at this site at least since the early Holocene. Combination of the results from the genetic and the PAR analyses furthermore suggests that the higher level of genetic variation found in the ancient populations and the loss of ancient allele types detected in the extant individuals were likely due to the repeated bottlenecks during the Holocene; however our limited sample size did not allow us to exclude sampling effect.This study demonstrates how past population size changes inferred from PAR records can be efficiently used in combination with ancient DNA studies. The joint application of palaeoecological and population genetics analyses proved to be a powerful tool to understand the influence of past population demographic changes on the haplotype diversity and genetic composition of forest tree species

    First record of Gomphonema lacunicola Patrick et Freese (Bacillariophyta) from the Pâreng Mts (Southern Carpathians, Romania)

    Get PDF
    Here we report and document the occurrence of the diatom Gomphonema lacunicola Patrick et Freese 1961 from the Pâreng Mts of the Carpathian Mountains, Romania. This observation was made within the framework of a systematic sampling campaign and analyses that were conducted in the Southern Carpathians, covering 40 mountain lakes for discovering the cladoceran fauna and diatom flora of this region between 2012 and 2014. G. lacunicola was found only in one of the 40 lakes, namely in Lake Câlcescu, where it was extremely rare, but the characteristic feature of the lake promoted the presence of the species. Lake Câlcescu is a subalpine lake, located 1,934 m a.s.l. This is the first record of this diatom species in Romania
    corecore