131 research outputs found

    Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action

    Get PDF
    Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. RESULTS: Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp.. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. CONCLUSIONS: The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor

    The need for an integrated multi‐OMICs approach in microbiome science in the food system

    Get PDF
    Microbiome science as an interdisciplinary research field has evolved rapidly over the past two decades, becoming a popular topic not only in the scientific community and among the general public, but also in the food industry due to the growing demand for microbiome-based technologies that provide added-value solutions. Microbiome research has expanded in the context of food systems, strongly driven by methodological advances in different -omics fields that leverage our understanding of microbial diversity and function. However, managing and integrating different complex -omics layers are still challenging. Within the Coordinated Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), a project supported by the European Commission, the workshop “Metagenomics, Metaproteomics and Metabolomics: the need for data integration in microbiome research” gathered 70 participants from different microbiome research fields relevant to food systems, to discuss challenges in microbiome research and to promote a switch from microbiome-based descriptive studies to functional studies, elucidating the biology and interactive roles ofmicrobiomes in food systems. A combination of technologies is proposed. This will reduce the biases resulting from each individual technology and result in a more comprehensive view of the biological system as a whole. Although combinations of different datasets are still rare, advanced bioinformatics tools and artificial intelligence approaches can contribute to understanding, prediction, and management of the microbiome, thereby providing the basis for the improvement of food quality and safety

    Microbiome-based solutions to address new and existing threats to food security, nutrition, health and agrifood systems' sustainability

    Get PDF
    In addition to challenges like climate change and biodiversity loss, the sustainability and resilience of agrifood systems worldwide are currently challenged by new threats, such as the COVID-19 pandemic and the Ukraine war. Furthermore, the resilience and sustainability of our agrifood systems need to be enhanced in ways that simultaneously increase agricultural production, decrease post-harvest food losses and food waste, protect the climate, environment and health, and preserve biodiversity. The precarious situation of agrifood systems is also illustrated by the fact that overall, around 3 billion people worldwide still do not have regular access to a healthy diet. This results in various forms of malnutrition, as well as increasing number of people suffering from overweight and obesity, and diet-related, non-communicable diseases (NCDs) around the world. Findings from microbiome research have shown that the human gut microbiome plays a key role in nutrition and diet-related diseases and thus human health. Furthermore, the microbiome of soils, plants, and animals play an equally important role in environmental health and agricultural production. Upcoming, microbiome-based solutions hold great potential for more resilient, sustainable, and productive agrifood systems and open avenues toward preventive health management. Microbiome-based solutions will also be key to make better use of natural resources and increase the resilience of agrifood systems to future emerging and already-known crises. To realize the promises of microbiome science and innovation, there is a need to invest in enhancing the role of microbiomes in agrifood systems in a holistic One Health approach and to accelerate knowledge translation and implementation.YS, KD'H, LL, HS, LO, TK, EM, AM, IS, and AS received funding from the European Union's H2020 Research and Innovation Programme under Grant No. 818116 (Microbiome Support).Peer reviewe

    A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment

    Get PDF
    Background The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals. In this work, we established a catalog of reference prokaryote genes from the bovine rumen. Results Using deep metagenome sequencing we identified 13,825,880 non-redundant prokaryote genes from the bovine rumen. Compared to human, pig, and mouse gut metagenome catalogs, the rumen is larger and richer in functions and microbial species associated with the degradation of plant cell wall material and production of methane. Genes encoding enzymes catalyzing the breakdown of plant polysaccharides showed a particularly high richness that is otherwise impossible to infer from available genomes or shallow metagenomics sequencing. The catalog expands the dataset of carbohydrate-degrading enzymes described in the rumen. Using an independent dataset from a group of 77 cattle fed 4 common dietary regimes, we found that only <0.1% of genes were shared by all animals, which contrast with a large overlap for functions, i.e., 63% for KEGG functions. Different diets induced differences in the relative abundance rather than the presence or absence of genes, which explains the great adaptability of cattle to rapidly adjust to dietary changes. Conclusions These data bring new insights into functions, carbohydrate-degrading enzymes, and microbes of the rumen to complement the available information on microbial genomes. The catalog is a significant biological resource enabling deeper understanding of phenotypes and biological processes and will be expanded as new data are made available.info:eu-repo/semantics/publishedVersio

    Microbiome definition re-visited: old concepts and new challenges

    Get PDF
    peer-reviewedAbstract The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term “microbiome.” Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstrac

    Microbiome ethics, guiding principles for microbiome research, use and knowledge management

    Get PDF
    peer-reviewedThe overarching biological impact of microbiomes on their hosts, and more generally their environment, reflects the co-evolution of a mutualistic symbiosis, generating fitness for both. Knowledge of microbiomes, their systemic role, interactions, and impact grows exponentially. When a research field of importance for planetary health evolves so rapidly, it is essential to consider it from an ethical holistic perspective. However, to date, the topic of microbiome ethics has received relatively little attention considering its importance. Here, ethical analysis of microbiome research, innovation, use, and potential impact is structured around the four cornerstone principles of ethics: Do Good; Don’t Harm; Respect; Act Justly. This simple, but not simplistic approach allows ethical issues to be communicative and operational. The essence of the paper is captured in a set of eleven microbiome ethics recommendations, e.g., proposing gut microbiome status as common global heritage, similar to the internationally agreed status of major food crops

    Etude des inhibitions de division associees a l'arret de replication de l'ADN et de la segregation des nucleoiedes chez Escherichia coli

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Etude de deux facteurs sigma secondaires de Lactococcus lactis

    No full text
    L expression des gĂšnes codant les facteurs sigma ComX et SigX chez Lactococcus lactis varie pendant la croissance : le pic d expression de comX correspond Ă  l entrĂ©e en phase stationnaire et celui de sigX se situe en phase exponentielle. Le but de ce travail est de comprendre le rĂŽle de ces facteurs sigma chez L. lactis.ComX est homologue aux sigma induisant la transcription des gĂšnes tardifs de compĂ©tence naturelle chez certains streptocoques. L. lactis n est pas rĂ©pertoriĂ© comme naturellement compĂ©tent mais son gĂ©nome comporte des gĂšnes codant un systĂšme tardif potentiel. Deux types de ComX (ComXIL et ComXMG) ont Ă©tĂ© identifiĂ©s chez les lactocoques divergeant par des substitutions d acides aminĂ©s. La surexpression de comXIL engendre l induction de la transcription des gĂšnes tardifs. Un motif conservĂ© ( cin-box ) est retrouvĂ© en amont de ces gĂšnes et pourrait correspondre Ă  la sĂ©quence reconnue par ComXIL pour initier la transcription. La cin-box s est rĂ©vĂ©lĂ©e ĂȘtre trĂšs conservĂ©e chez les lactocoques, y compris dans les souches comportant le ComXMG. La purification de ComXIL, ComXMG et de l ARN polymĂ©rase a Ă©tĂ© entreprise pour Ă©tudier l affinitĂ© des ComX pour la cin-box et pour l ARN polymĂ©rase. Pour identifier le rĂ©gulon contrĂŽlĂ© par SigX, deux approches sont menĂ©es en comparant deux conditions : surexpression ou non de sigX. La premiĂšre approche Ă©tait la protĂ©omique. Cette Ă©tude n a pas rĂ©vĂ©lĂ© de cibles de SigX. La seconde approche est la transcriptomique. Les premiers rĂ©sultats indiquent que SigX contrĂŽlerait la transcription de gĂšnes codant des protĂ©ines membranaires. Cette Ă©tude devrait aboutir Ă  l identification du rĂŽle de SigX chez L. lactis.The expression of the genes encoding the sigma factors ComX and SigX in Lactococcus lactis differs during growth : the expression peak of comX corresponds at the onset of the stationary phase and the one of sigX takes place in exponential phase. The aim of this work is to understand the role of these sigma factors in Lactococcus lactis.ComX is homologous to sigma inducing the transcription of the late genes of natural competence in several streptococci. L. lactis is not listed as a natural competent bacterium but its genome includes some genes encoding a potential late system. Two types of ComX (ComXIL and ComXMG) were identified in lactococci that diverge by amino-acid substitutions. The overeexpression of ComXIL allows the induction of the transcription of the late genes. A conserved motif ( cin-box ) is found upstream of these genes and could correspond to the sequence recognised by ComXIL to initiate the transcription. The cin-box revealed itself to be very conserved in lactococci, including in the strains with a ComX of type ComXMG. The purification of ComXIL, ComXMG and of the RNA polymerase has been undertaken to study the affinity of the ComX for the cin-box and for the RNA polymerase. To identify the regulon controlled by SigX, two approaches are used by comparing two conditions : overexpression or not of sigX. The first approach was the proteomic. This study did not reveal any targets of SigX. The second approach is the transcriptomic. The first results indicate that SigX may control the transcription of genes encoding membrane proteins. This study should lead to the identification of the role of SigX in L. lactis.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
    • 

    corecore