22 research outputs found

    Predictive modeling of suitable habitats for threatened marine invertebrates and implications for conservation assessment in Brazil

    Get PDF
    Neste estudo foram utilizadas análises espaciais e ferramentas de modelagem para predizer a distribuição dos hábitats adequados aos invertebrados marinhos ameaçados e estimar a sobreposição destas áreas em relação às áreas marinhas protegidas existentes. Registros de ocorrência das espécies foram obtidos das coleções incluídas no Ocean Biogeographic Information System (OBIS-Brasil) e de dados provenientes da literatura. Dados de distribuição de 16 das 33 espécies ameaçadas, com pelo menos 10 registros de ocorrência, foram selecionados para modelagem utilizando o algoritmo Maxent (Maximum Entropy Modeling) e variáveis ambientais (temperatura, salinidade, batimetria e derivados). Os mapas resultantes foram filtrados para obtenção de áreas altamente adequadas, através de um limiar de corte de 0.5, e sobrepostos com o mapa digital de áreas protegidas. O algoritmo apresentou modelos de predição satisfatórios, mostrando que os padrões previstos no modelo são coerentes com o conhecimento atual sobre as espécies. A distribuição das áreas altamente adequadas mostrou baixa sobreposição com as áreas protegidas brasileiras. Este estudo indicou como a adequabilidade de hábitats para espécies ameaçadas pode ser realizada, utilizando aplicações em SIG e ferramentas de modelagem.Spatial analysis and modeling tools were employed to predict suitable habitat distribution for threatened marine invertebrates and estimate the overlap between highly suitable areas for these species and the Brazilian marine protected areas (MPAs). Records of the occurrence of species were obtained from the collections included in the Ocean Biogeographic Information System (OBIS-Brazil), with additional records culled from the literature. The distribution data of 16 out of 33 threatened species, with at least ten occurrences in the available records, were selected for modeling by Maxent algorithm (Maximum Entropy Modeling) based on environmental variables (temperature, salinity, bathymetry and their derivatives). The resulting maps were filtered with a fixed threshold of 0.5 (to distinguish only the highly suitable areas) and superimposed on MPA digital maps. The algorithm produced reasonable predictions of the species' potential distributions, showing that the patterns predicted by the model are largely consistent with current knowledge of the species. The distribution of the highly suitable areas showed little overlapping with Brazilian MPAs. This study showed how the habitat suitability for threatened species can be assessed using GIS applications and modeling tools

    Quantifying cross-scale patch contributions to spatial connectivity

    Get PDF
    Context: Connectivity between habitat patches is vital for ecological processes at multiple scales. Traditional metrics do not measure the scales at which individual habitat patches contribute to the overall ecological connectivity of the landscape. Connectivity has previously been evaluated at several different scales based on the dispersal capabilities of particular organisms, but these approaches are data-heavy and conditioned on just a few species. Objectives: Our objective was to improve cross-scale measurement of connectivity by developing and testing a new landscape metric, cross-scale centrality. Methods: Cross-scale centrality (CSC) integrates over measurements of patch centrality at different scales (hypothetical dispersal distances) to quantify the cross-scale contribution of each individual habitat patch to overall landscape or seascape connectivity. We tested CSC against an independent metapopulation simulation model and demonstrated its potential application in conservation planning by comparison to an alternative approach that used individual dispersal data. Results: CSC correlated significantly with total patch occupancy across the entire landscape in our metapopulation simulation, while being much faster and easier to calculate. Standard conservation planning software (Marxan) using dispersal data was weaker than CSC at capturing locations with high cross-scale connectivity. Conclusions: Metrics that measure pattern across multiple scales are much faster and more efficient than full simulation models and more rigorous and interpretable than ad hoc incorporation of connectivity into conservation plans. In reality, connectivity matters for many different organisms across many different scales. Metrics like CSC that quantify landscape pattern across multiple different scales can make a valuable contribution to multi-scale landscape measurement, planning, and management

    Cumulative human impacts on coral reefs: assessing risk and management implications for Brazilian coral reefs

    Get PDF
    Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal development, mining, aquaculture, shipping, and global warming). We calculated an index of the risk to cumulative impacts: (i) assuming uniform sensitivity of coral reefs to stressors; and (ii) using impact weights to reflect varying tolerance levels of coral reefs to each stressor. We also predicted the index in both the presence and absence of global warming. We found that 16% and 37% of coral reefs had high to very high risk of cumulative impacts, without and with information on sensitivity respectively, and 42% of reefs had low risk to cumulative impacts from both local and global stressors. Our outputs are the first comprehensive spatial dataset of cumulative impact on coral reefs in Brazil, and show that areas requiring attention mostly corresponded to those closer to population centres. We demonstrate how the relationships between risks from local and global stressors can be used to derive strategic management actions

    Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning

    Get PDF
    Current methods in conservation planning for promoting the persistence of biodiversity typically focus on either representing species geographic distributions or maintaining connectivity between reserves, but rarely both, and take a focal species, rather than a multispecies, approach. Here, we link prioritization methods with population models to explore the impact of integrating both representation and connectivity into conservation planning for species persistence. Using data on 288 Mediterranean fish species with varying conservation requirements, we show that: (1) considering both representation and connectivity objectives provides the best strategy for enhanced biodiversity persistence and (2) connectivity objectives were fundamental to enhancing persistence of small-ranged species, which are most in need of conservation, while the representation objective benefited only wide-ranging species. Our approach provides a more comprehensive appraisal of planning applications than approaches focusing on either representation or connectivity, and will hopefully contribute to build more effective reserve networks for the persistence of biodiversity

    Data from: A meta-analysis reveals global patterns of sediment effects on marine biodiversity

    No full text
    Sediment disturbances are important threats affecting marine biodiversity, but the variety of biological responses have not yet been synthesized. Here, we collate all available information to compare the extent of impacts across different taxonomic groups, habitat types, and pathways of impact (light attenuation, suspended sediment and sedimentation). Global 1979-2017 Coral, fish, seagrass, sponge, macroalgae, ascidian, bryozoan, crustacean, echinoderm, mollusc, polychaeta We used meta-analyses to evaluate the effects of sediments across 842 observations found in 110 publications. We also evaluated some of the biological and methodological factors that could explain the variable effects observed in different studies. We found a significant negative effect of sediments on behavioural responses, reproduction and recruitment, organism’s morphology, physiology, community abundance and diversity, and species interactions. In contrast, the overall effect on abundance of individual species was statistically non-significant and there was a strong positive effect on abundance for sponge and polychaete species. Many individual studies described physiological effects on coral reefs, but effects on diversity of soft-bottom and coral reef communities were particularly detrimental. Phototrophic species were generally more negatively impacted by sediments than heterotrophs, driven by strong physiological responses in crustose coralline algae and seagrass. Additionally, species with limited mobility were more vulnerable to sediment disturbances than highly mobile species. Sedimentation alone triggered more consistently negative effects on most biological responses than light depletion and suspended sediments. We found evidence for increased impacts on community diversity when more than one pathway of impact was present, indicating that these disturbances can disrupt whole ecosystems. Our meta-analysis for the first time provided strong quantitative support of negative effects of sediments on marine biodiversity. Taxonomic groups, habitat types, and life history characteristics were most influential in determining biological responses to sediment disturbances, highlighting the importance of an ecosystem-based approach when fully accounting for the impacts of sedimen

    Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    No full text
    Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal development, mining, aquaculture, shipping, and global warming). We calculated an index of the risk to cumulative impacts: (i) assuming uniform sensitivity of coral reefs to stressors; and (ii) using impact weights to reflect varying tolerance levels of coral reefs to each stressor. We also predicted the index in both the presence and absence of global warming. We found that 16% and 37% of coral reefs had high to very high risk of cumulative impacts, without and with information on sensitivity respectively, and 42% of reefs had low risk to cumulative impacts from both local and global stressors. Our outputs are the first comprehensive spatial dataset of cumulative impact on coral reefs in Brazil, and show that areas requiring attention mostly corresponded to those closer to population centres. We demonstrate how the relationships between risks from local and global stressors can be used to derive strategic management actions

    INTERANNUAL VARIABILITY IN TROPICAL ESTUARINE COPEPOD ASSEMBLAGES OFF NORTHEASTERN BRAZIL

    No full text
    We studied copepod assemblage variability among years, seasons, and tidal states in the Mucuri River estuary (Bahia State, Brazil). Zooplankton samples were collected seasonally through five years (2002-2006) at three sampling stations, one of which was sampled over a complete tidal cycle (two ebb and two flood tides). Temperature, salinity, river flux, and rainfall data were collected. Winter and summer represented dry and wet seasons, respectively. Copepod abundances ranged from 40 to 63% of the total zooplankton assemblage and comprised 46 taxa, among which, common estuarine species such as Temora turbinata (first record for the studied area), Parvocalanus crassirostris, Acartia lilljeborgi, Oithona hebes were the most abundant (euryhaline species). Interannual and seasonal variations were most marked in stenohaline species, e.g.. Notodiaptomus sp. and Thermocyclops minutus; density variations of euryhaline species, which made up the majority of the abundant taxa, were most closely related to tides. Diversity and richness also followed an intertidal pattern of variation.Zooplankton Laboratory at the Federal University of Espirito Sant

    Integrating connectivity and climate change into marine conservation planning

    No full text
    Most applications of systematic conservation planning have not effectively incorporated biological processes or dynamic threats. We investigated the extent to which connectivity and climate change have been considered in an ecologically meaningful way in marine conservation planning, as an attempt to help formulate conservation objectives for population persistence, over and above representation. Our review of the literature identified 115 marine planning studies that addressed connectivity and 47 that addressed the effects of climate change. Of the statements identified that related to goals and objectives, few were quantitative and justified by ecological evidence for either connectivity (13%) or climate change (8.9%). Most studies addressing connectivity focused on spatial design (e.g. size and spacing) of marine protected areas (MPAs) or clustering of planning units. Climate change recommendations were primarily based on features related to MPA placement (e.g. preferences for areas relatively resilient and resistant to climate change impacts). Quantitative methods to identify spatial or temporal dynamics of features related to connectivity and/or climate change (e.g. functionally well-connected or thermal refugia areas) were rare, and these accounted for the majority of ecologically justified statements. Given these shortcomings in the literature, we outline a framework for setting marine conservation planning objectives that describes six key approaches to more effectively integrate connectivity and climate change into conservation plans, aligning opportunities and minimizing trade-offs between both issues
    corecore