223 research outputs found

    Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation

    Get PDF
    Neural circuitry in the lumbar spinal cord governs two principal features of locomotion, rhythm and pattern, which reflect intra- and interlimb movement. These features are functionally organized into a hierarchy that precisely controls stepping in a stereotypic, speed-dependent fashion. Here, we show that a specific component of the locomotor pattern can be independently manipulated. Silencing spinal L2 interneurons that project to L5 selectively disrupts hindlimb alternation allowing a continuum of walking to hopping to emerge from the otherwise intact network. This perturbation, which is independent of speed and occurs spontaneously with each step, does not disrupt multi-joint movements or forelimb alternation, nor does it translate to a non-weight-bearing locomotor activity. Both the underlying rhythm and the usual relationship between speed and spatiotemporal characteristics of stepping persist. These data illustrate that hindlimb alternation can be manipulated independently from other core features of stepping, revealing a striking freedom in an otherwise precisely controlled system

    A Method for Serial Tissue Processing and Parallel Analysis of Aberrant Crypt Morphology, Mucin Depletion, and Beta-Catenin Staining in an Experimental Model of Colon Carcinogenesis

    Get PDF
    The use of architectural and morphological characteristics of cells for establishing prognostic indicators by which individual pathologies are assigned grade and stage is a well-accepted practice. Advances in automated micro- and macroscopic image acquisition and digital image analysis have created new opportunities in the field of prognostic assessment; but, one area in experimental pathology, animal models for colon cancer, has not taken advantage of these opportunities. This situation is primarily due to the methods available to evaluate the colon of the rodent for the presence of premalignant and malignant pathologies. We report a new method for the excision and processing of the entire colon of the rat and illustrate how this procedure permitted the quantitative assessment of aberrant crypt foci (ACF), a premalignant colon pathology, for characteristics consistent with progression to malignancy. ACF were detected by methylene blue staining and subjected to quantitative morphometric analysis. Colons were then restained with high iron diamine–alcian blue for assessment of mucin depletion using an image overlay to associate morphometric data with mucin depletion. The subsequent evaluation of ACF for beta-catenin staining is also demonstrated. The methods described are particularly relevant to the screening of compounds for cancer chemopreventive activity

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Three Dimensional Structure of the MqsR:MqsA Complex: A Novel TA Pair Comprised of a Toxin Homologous to RelE and an Antitoxin with Unique Properties

    Get PDF
    One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021), which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA) pair. MqsR adopts an Ξ±/Ξ² fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy). Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state

    Temperature, recreational fishing and diapause egg connections : dispersal of spiny water fleas (Bythotrephes longimanus)

    Get PDF
    Β© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biological Invasions 13 (2011): 2513-2531, doi:10.1007/s10530-011-0078-8.The spiny water flea (Bythotrephes longimanus) is spreading from Great Lakes coastal waters into northern inland lakes within a northern temperature-defined latitudinal band. Colonization of Great Lakes coastal embayments is assisted by winds and seiche surges, yet rapid inland expansion across the northern states comes through an overland process. The lack of invasions at Isle Royale National Park contrasts with rapid expansion on the nearby Keweenaw Peninsula. Both regions have comparable geology, lake density, and fauna, but differ in recreational fishing boat access, visitation, and containment measures. Tail spines protect Bythotrephes against young of the year, but not larger fish, yet the unusual thick-shelled diapausing eggs can pass through fish guts in viable condition. Sediment traps illustrate how fish spread diapausing eggs across lakes in fecal pellets. Trillions of diapausing eggs are produced per year in Lake Michigan and billions per year in Lake Michigamme, a large inland lake. Dispersal by recreational fishing is linked to use of baitfish, diapausing eggs defecated into live wells and bait buckets, and Bythothephes snagged on fishing line, anchor ropes, and minnow seines. Relatively simple measures, such as on-site rinsing of live wells, restricting transfer of certain baitfish species, or holding baitfish for 24 h (defecation period), should greatly reduce dispersal.Study of Lakes Superior and Michigan was funded from NSF OCE-9726680 and OCE-9712872 to W.C.K., OCE-9712889 to J. Churchill. Geographic survey sampling and Park studies in the national parks during 2008-2010 were funded by a grant from the National Park Service Natural Resource Preservation Program GLNF CESU Task Agreement No. J6067080012

    Temperature and Resource Availability May Interactively Affect Over-Wintering Success of Juvenile Fish in a Changing Climate

    Get PDF
    The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5Β°C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2Β°C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task

    Treatment of displaced intra-articular calcaneal fractures by ligamentotaxis: current concepts’ review

    Get PDF
    Introduction: A large variety of therapeutic modalities for calcaneal fractures have been described in the literature. No single treatment modality for displaced intra-articular calcaneal fractures has proven superior over the other. This review describes and compares the different percutaneous distractional approaches for intra-articular calcaneal fractures. The history, technique, anatomical and fracture considerations, limitations and the results of different distractional approaches reported in the literature are reviewed. Method: Literature review on different percutaneous distractional approaches for displaced intra-articular calcaneal fractures. Results: Eight studies in which application of a distraction technique was used for the treatment of calcaneal fractures were identified. Because of the use of different classification, techniques, and outcome scoring systems, a meta-analysis was not possible. A literature review reveals overall fair to poor result in 10-29% of patients. Ten up to 26% of patients are unable to return to work after percutaneous treatment of their fracture. A secondary arthrodesis has to be performed in 2-15% of the cases. Infectious complications occur in 2-15%. Some loss of reduction is reported in 4-67%. Conclusion: Percutaneous distractional reduction and fixation appears to be a safe technique with overall good results and an acceptable complication rate, compared with other treatment modalities for displaced intra-articular calcaneal fractures. A meta-analysis, based on Cochrane Library criteria is not possible, because of a lack of level 1 and 2 trials on this subject

    Comprehensive Functional Analysis of Mycobacterium tuberculosis Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and Evolution

    Get PDF
    Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought. Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex (MTBC), but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus, suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M. smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis
    • …
    corecore