3,790 research outputs found

    Early Science with the Karoo Array Telescope: a Mini-Halo Candidate in Galaxy Cluster Abell 3667

    Full text link
    Abell 3667 is among the most well-studied galaxy clusters in the Southern Hemisphere. It is known to host two giant radio relics and a head-tail radio galaxy as the brightest cluster galaxy. Recent work has suggested the additional presence of a bridge of diffuse synchrotron emission connecting the North-Western radio relic with the cluster centre. In this work, we present full-polarization observations of Abell 3667 conducted with the Karoo Array Telescope at 1.33 and 1.82 GHz. Our results show both radio relics as well as the brightest cluster galaxy. We use ancillary higher-resolution data to subtract the emission from this galaxy, revealing a localised excess, which we tentatively identify as a radio mini-halo. This mini-halo candidate has an integrated flux density of 67.2±4.967.2\pm4.9 mJy beam−1^{-1} at 1.37 GHz, corresponding to a radio power of P1.4 GHz=4.28±0.31×1023_{\rm{1.4\,GHz}}=4.28\pm0.31\times10^{23} W Hz−1^{-1}, consistent with established trends in mini-halo power scaling.Comment: 17 pages, 10 figures, accepted MNRA

    Topological interface engineering and defect crossing in ultracold atomic gases

    Full text link
    We propose an experimentally feasible scheme for topological interface engineering and show how it can be used for studies of dynamics of topologically nontrivial interfaces and perforation of defects and textures across such interfaces. The method makes use of the internal spin structure of the atoms together with locally applied control of interaction strengths to create many-particle states with highly complex topological properties. In particular, we consider a constructed coherent interface between topologically distinct phases of spinor Bose-Einstein condensates.Comment: 9 pages, 7 figure

    Properties of finite Gaussians and the discrete-continuous transition

    Full text link
    Weyl's formulation of quantum mechanics opened the possibility of studying the dynamics of quantum systems both in infinite-dimensional and finite-dimensional systems. Based on Weyl's approach, generalized by Schwinger, a self-consistent theoretical framework describing physical systems characterised by a finite-dimensional space of states has been created. The used mathematical formalism is further developed by adding finite-dimensional versions of some notions and results from the continuous case. Discrete versions of the continuous Gaussian functions have been defined by using the Jacobi theta functions. We continue the investigation of the properties of these finite Gaussians by following the analogy with the continuous case. We study the uncertainty relation of finite Gaussian states, the form of the associated Wigner quasi-distribution and the evolution under free-particle and quantum harmonic oscillator Hamiltonians. In all cases, a particular emphasis is put on the recovery of the known continuous-limit results when the dimension dd of the system increases.Comment: 21 pages, 4 figure

    Supersymmetric Jaynes-Cummings model and its exact solutions

    Get PDF
    The super-algebraic structure of a generalized version of the Jaynes-Cummings model is investigated. We find that a Z2 graded extension of the so(2,1) Lie algebra is the underlying symmetry of this model. It is isomorphic to the four-dimensional super-algebra u(1/1) with two odd and two even elements. Differential matrix operators are taken as realization of the elements of the superalgebra to which the model Hamiltonian belongs. Several examples with various choices of superpotentials are presented. The energy spectrum and corresponding wavefunctions are obtained analytically.Comment: 12 pages, no figure

    Preliminary Measurements of the Motion of Arcjet Current Channel Using Inductive Magnetic Probes

    Get PDF
    This paper covers the design and first measurements of non-perturbative, external inductive magnetic diagnostics for arcjet constrictors which can measure the motion of the arc current channel. These measurements of arc motion are motivated by previous simulations using the ARC Heater Simulator (ARCHeS), which predicted unsteady arc motion due to the magnetic kink instability. Measurements of the kink instability are relevant to characterizing motion of the enthalpy profile of the arcjet, the arcjet operational stability, and electrode damage due to associated arc detachment events. These first measurements indicate 4 mm oscillations at 0.5-2 kHz of the current profile

    Radiative Phase Transitions and Casmir Effect Instabilities

    Full text link
    Molecular quantum electrodynamics leads to photon frequency shifts and thus to changes in condensed matter free energies often called the Casimir effect. Strong quantum electrodynamic coupling between radiation and molecular motions can lead to an instability beyond which one or more photon oscillators undergo a displacement phase transition. The phase boundary of the transition can be located by a Casimir free energy instability.Comment: ReVTeX4 format 1 *.eps figur

    Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect and Anomalous Cross Section induced by Quantum Interference

    Full text link
    Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard shere'' like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in quite general potential system and will be useful in understanding some other phenomena in mesoscopic phyiscs.Comment: 6 figure

    The exponential law: Monopole detectors, Bogoliubov transformations, and the thermal nature of the Euclidean vacuum in RP^3 de Sitter spacetime

    Full text link
    We consider scalar field theory on the RP^3 de Sitter spacetime (RP3dS), which is locally isometric to de Sitter space (dS) but has spatial topology RP^3. We compare the Euclidean vacua on RP3dS and dS in terms of three quantities that are relevant for an inertial observer: (i) the stress-energy tensor; (ii) the response of an inertial monopole particle detector; (iii) the expansion of the Euclidean vacuum in terms of many-particle states associated with static coordinates centered at an inertial world line. In all these quantities, the differences between RP3dS and dS turn out to fall off exponentially at early and late proper times along the inertial trajectory. In particular, (ii) and (iii) yield at early and late proper times in RP3dS the usual thermal result in the de Sitter Hawking temperature. This conforms to what one might call an exponential law: in expanding locally de Sitter spacetimes, differences due to global topology should fall off exponentially in the proper time.Comment: 22 pages, REVTex v3.1 with amsfonts and epsf, includes 2 eps figures. (v2: Minor typos corrected, references updated.

    Classical and quantum radiation from a moving charge in an expanding universe

    Get PDF
    We investigate photon emission from a moving particle in an expanding universe. This process is analogous to the radiation from an accelerated charge in the classical electromagnetic theory. Using the framework of quantum field theory in curved spacetime, we demonstrate that the Wentzel-Kramers-Brillouin (WKB) approximation leads to the Larmor formula for the rate of the radiation energy from a moving charge in an expanding universe. Using exactly solvable models in a radiation-dominated universe and in a Milne universe, we examine the validity of the WKB formula. It is shown that the quantum effect suppresses the radiation energy in comparison with the WKB formula.Comment: 16 pages, JCAP in pres

    More on coupling coefficients for the most degenerate representations of SO(n)

    Full text link
    We present explicit closed-form expressions for the general group-theoretical factor appearing in the alpha-topology of a high-temperature expansion of SO(n)-symmetric lattice models. This object, which is closely related to 6j-symbols for the most degenerate representation of SO(n), is discussed in detail.Comment: 9 pages including 1 table, uses IOP macros Update of Introduction and Discussion, References adde
    • …
    corecore