46 research outputs found

    A 4 Gyr M-dwarf Gyrochrone from CFHT/MegaPrime Monitoring of the Open Cluster M67

    Full text link
    We present stellar rotation periods for late K- and early M-dwarf members of the 4 Gyr old open cluster M67 as calibrators for gyrochronology and tests of stellar spin-down models. Using Gaia EDR3 astrometry for cluster membership and Pan-STARRS (PS1) photometry for binary identification, we build this set of rotation periods from a campaign of monitoring M67 with the Canada-France-Hawaii Telescope's MegaPrime wide field imager. We identify 1807 members of M67, of which 294 are candidate single members with significant rotation period detections. Moreover, we fit a polynomial to the period versus color-derived effective temperature sequence observed in our data. We find that the rotation of very cool dwarfs can be explained by a simple solid-body spin-down between 2.7 and 4 Gyr. We compare this rotational sequence to the predictions of gyrochronological models and find that the best match is Skumanich-like spin-down, P_rot \propto t^0.62, applied to the sequence of Ruprecht 147. This suggests that, for spectral types K7-M0 with near-solar metallicity, once a star resumes spinning down, a simple Skumanich-like is sufficient to describe their rotation evolution, at least through the age of M67. Additionally, for stars in the range M1-M3, our data show that spin-down must have resumed prior to the age of M67, in conflict with predictions of the latest spin-down models.Comment: 21 pages, 16 figures, Accepted for publication by Ap

    The splitting of double-component active asteroid P/2016 J1 (PANSTARRS)

    Get PDF
    We present deep imaging observations, orbital dynamics, and dust tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada-France-Hawaii Telescope (CFHT) from mid March to late July, 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ∼\sim2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust tail models show that those two components became active simultaneously ∼\sim250 days before the current perihelion, with comparable maximum loss rates of ∼\sim0.7 kg s−1^{-1} and ∼\sim0.5 kg s−1^{-1}, and total ejected masses of 8×\times106^{6} kg and 6×\times106^{6} kg for fragments J1-A and J1-B, respectively. In consequence, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6 to 9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.Comment: Accepted by ApJ Letters, Feb. 17, 201

    Core repulsion effects in alkali trimers

    Full text link
    The present paper is related to a talk presented during the Symposium on Coherent Control and Ultracold Chemistry held during the Sixth Congress of the International Society for Theoretical Chemical Physics (ISTCP-VI, July 2008). The talk was entitled "Electronic structure properties of alkali dimers and trimers. Prospects for alignment of ultracold molecules". Here we report on the electrostatic repulsion forces of the ionic cores at short separation, involved when the potential energy surfaces of alkali trimers are calculated with a quantum chemistry approach based on effective large-core potentials for ionic core description. We demonstrate that such forces in the triatomic molecule can be obtained as the sum of three pairwise terms. We illustrate our results on the lowest electronic states of Cs3_3, which are computed for the first time within a full configuration interaction based on a large Gaussian basis set. As a preliminary section, we also propose a brief introduction about the importance of alkali trimer systems in the context of cold and ultracold molecules

    The Robo-AO-2 facility for rapid visible/near-infrared AO imaging and the demonstration of hybrid techniques

    Get PDF
    We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea observing site, expanded spectral range and rapid response to high-priority events represent a significant advance over the prototype. Robo-AO-2 will include a new reconfigurable natural guide star sensor for exquisite wavefront correction on bright targets and the demonstration of potentially transformative hybrid AO techniques that promise to extend the faintness limit on current and future exoplanet adaptive optics systems.Comment: 15 page

    Analysis of Neptune's 2017 Bright Equatorial Storm

    Get PDF
    We report the discovery of a large (∼\sim8500 km diameter) infrared-bright storm at Neptune's equator in June 2017. We tracked the storm over a period of 7 months with high-cadence infrared snapshot imaging, carried out on 14 nights at the 10 meter Keck II telescope and 17 nights at the Shane 120 inch reflector at Lick Observatory. The cloud feature was larger and more persistent than any equatorial clouds seen before on Neptune, remaining intermittently active from at least 10 June to 31 December 2017. Our Keck and Lick observations were augmented by very high-cadence images from the amateur community, which permitted the determination of accurate drift rates for the cloud feature. Its zonal drift speed was variable from 10 June to at least 25 July, but remained a constant 237.4±0.2237.4 \pm 0.2 m s−1^{-1} from 30 September until at least 15 November. The pressure of the cloud top was determined from radiative transfer calculations to be 0.3-0.6 bar; this value remained constant over the course of the observations. Multiple cloud break-up events, in which a bright cloud band wrapped around Neptune's equator, were observed over the course of our observations. No "dark spot" vortices were seen near the equator in HST imaging on 6 and 7 October. The size and pressure of the storm are consistent with moist convection or a planetary-scale wave as the energy source of convective upwelling, but more modeling is required to determine the driver of this equatorial disturbance as well as the triggers for and dynamics of the observed cloud break-up events.Comment: 42 pages, 14 figures, 6 tables; Accepted to Icaru
    corecore