19 research outputs found

    Physical examination tests of the shoulder: a systematic review and meta-analysis of diagnostic test performance

    Get PDF
    Background: Physical examination tests of the shoulder (PETS) are clinical examination maneuvers designed to aid the assessment of shoulder complaints. Despite more than 180 PETS described in the literature, evidence of their validity and usefulness in diagnosing the shoulder is questioned. Methods: This meta-analysis aims to use diagnostic odds ratio (DOR) to evaluate how much PETS shift overall probability and to rank the test performance of single PETS in order to aid the clinician’s choice of which tests to use. This study adheres to the principles outlined in the Cochrane guidelines and the PRISMA statement. A fixed effect model was used to assess the overall diagnostic validity of PETS by pooling DOR for different PETS with similar biomechanical rationale when possible. Single PETS were assessed and ranked by DOR. Clinical performance was assessed by sensitivity, specificity, accuracy and likelihood ratio. Results: Six thousand nine-hundred abstracts and 202 full-text articles were assessed for eligibility; 20 articles were eligible and data from 11 articles could be included in the meta-analysis. All PETS for SLAP (superior labral anterior posterior) lesions pooled gave a DOR of 1.38 [1.13, 1.69]. The Supraspinatus test for any full thickness rotator cuff tear obtained the highest DOR of 9.24 (sensitivity was 0.74, specificity 0.77). Compression-Rotation test obtained the highest DOR (6.36) among single PETS for SLAP lesions (sensitivity 0.43, specificity 0.89) and Hawkins test obtained the highest DOR (2.86) for impingement syndrome (sensitivity 0.58, specificity 0.67). No single PETS showed superior clinical test performance. Conclusions: The clinical performance of single PETS is limited. However, when the different PETS for SLAP lesions were pooled, we found a statistical significant change in post-test probability indicating an overall statistical validity. We suggest that clinicians choose their PETS among those with the highest pooled DOR and to assess validity to their own specific clinical settings, review the inclusion criteria of the included primary studies. We further propose that future studies on the validity of PETS use randomized research designs rather than the accuracy design relying less on well-established gold standard reference tests and efficient treatment options

    Surgery with disc prosthesis versus rehabilitation in patients with low back pain and degenerative disc: two year follow-up of randomised study

    Get PDF
    Objective To compare the efficacy of surgery with disc prosthesis versus non-surgical treatment for patients with chronic low back pain

    Feilaktig om forandringer i cervikalcolumna

    No full text

    PRL-3 induces a positive signaling circuit between glycolysis and activation of STAT1/2

    No full text
    Multiple myeloma (MM) is an incurable hematologic malignancy resulting from the clonal expansion of plasma cells. MM cells are interacting with components of the bone marrow microenvironment such as cytokines to survive and proliferate. Phosphatase of regenerating liver (PRL)-3, a cytokine-induced oncogenic phosphatase, is highly expressed in myeloma patients and is a mediator of metabolic reprogramming of cancer cells. To find novel pathways and genes regulated by PRL-3, we characterized the global transcriptional response to PRL-3 overexpression in two MM cell lines. We used pathway enrichment analysis to identify pathways regulated by PRL-3. We further confirmed the hits from the enrichment analysis with in vitro experiments and investigated their function. We found that PRL-3 induced expression of genes belonging to the type 1 interferon (IFN-I) signaling pathway due to activation of signal transducer and activator of transcription (STAT) 1 and STAT2. This activation was independent of autocrine IFN-I secretion. The increase in STAT1 and STAT2 did not result in any of the common consequences of increased IFN-I or STAT1 signaling in cancer. Knockdown of STAT1/2 did not affect the viability of the cells, but decreased PRL-3-induced glycolysis. Interestingly, glucose metabolism contributed to the activation of STAT1 and STAT2 and expression of IFN-I-stimulated genes in PRL-3-overexpressing cells. In summary, we describe a novel signaling circuit where the key IFN-I-activated transcription factors STAT1 and STAT2 are important drivers of the increase in glycolysis induced by PRL-3. Subsequently, increased glycolysis regulates the IFN-I-stimulated genes by augmenting the activation of STAT1/

    Phosphatase of regenerating liver 3 (PRL-3) is overexpressed in human prostate cancer tissue and promotes growth and migration

    Get PDF
    Background: PRL-3 is a phosphatase implicated in oncogenesis in multiple cancers. In some cancers, notably carcinomas, PRL-3 is also associated with inferior prognosis and increased metastatic potential. In this study we investigated the expression of PRL-3mRNA in fresh-frozen samples from patients undergoing radical prostatectomy because of prostate cancer (PC) and the biological function of PRL-3 in prostate cancer cells. Methods: Samples from 41 radical prostatectomy specimens (168 samples in total) divided into low (Gleason score ≤ 6), intermediate (Gleason score = 7) and high (Gleason score ≥ 8) risk were analyzed with gene expression profiling and compared to normal prostate tissue. PRL-3was identified as a gene with differential expression between healthy and cancerous tissue in these analyses. We used the prostate cancer cell lines PC3 and DU145 and a small molecular inhibitor of PRL-3 to investigate whether PRL-3 had a functional role in cancer. Relative ATP-measurement and thymidine incorporation were used to assess the effect of PRL-3 on growth of the cancer cells. We performed an in vitro scratch assay to investigate the involvement of PRL-3 in migration. Immunohistochemistry was used to identify PRL-3 protein in prostate cancer primary tumor and corresponding lymph node metastases. Results: Compared to normal prostate tissue, the prostate cancer tissue expressed a significantly higher level of PRL-3. We found PRL-3 to be present in both PC3 and DU145, and that inhibition of PRL-3 led to growth arrest and apoptosis in these two cell lines. Inhibition of PRL-3 led to reduced migration of the PC3 cells. Immunohistochemistry showed PRL-3 expression in both primary tumor and corresponding lymph node metastases. Conclusions: PRL-3 mRNA was expressed to a greater extent in prostate cancer tissue compared to normal prostate tissue. PRL-3 protein was expressed in both prostate cancer primary tumor and corresponding lymph node metastases. The results from our in vitro assays suggest that PRL-3 promotes growth and migration in prostate cancer. In conclusion, these results imply that PRL-3 has a role in the pathogenesis of prostate cancer

    Targeting phosphoglycerate dehydrogenase in multiple myeloma

    No full text
    Background: Multiple myeloma (MM) is a hematological malignancy characterized by the clonal expansion of plasma cells in the bone marrow. To date, this disease is still incurable and novel therapeutic approaches are required. Phosphoglycerate dehydrogenase (PHGDH) is the frst and rate-limiting enzyme in the de novo serine synthesis path way, and it has been attributed to bortezomib-resistance in MM. Methods: Two diferent PHGDH inhibitors, CBR5884 and NCT-503, were tested against human myeloma cell lines, primary MM cells from patients, and peripheral blood mononuclear cells isolated from healthy donors. The PHGDH inhibitors were then tested in combination with proteasome inhibitors in diferent MM cell lines, including proteas ome-resistant cell lines. Furthermore, we confrmed the efects of PHGDH inhibition through knocking down PHGDH and the efect of NCT-503 in vivo in the 5T33MM mouse model. Results: All the tested myeloma cell lines expressed PHGDH and were sensitive to doses of NCT-503 that were toler ated by peripheral blood mononuclear cells isolated from healthy donors. Upon testing bortezomib in combination with NCT-503, we noticed a clear synergy in several HMCLs. The sensitivity to bortezomib also increased after PHGDH knockdown, mimicking the efect of NCT-503 treatment. Interestingly, targeting PHGDH reduced the intracellular redox capacity of the cells. Furthermore, combination treatment with NCT-503 and bortezomib exhibited a therapeu tic advantage in vivo. Conclusions: Our study shows the therapeutic potential of targeting PHGDH in MM, and suggest it as a way to over come the resistance to proteasome inhibitor
    corecore