676 research outputs found

    The Past, Present, and Future of Non-Viral CAR T Cells

    Full text link
    Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation

    Different FDG-PET metabolic patterns at single-subject level in the behavioral variant of fronto-temporal dementia.

    Get PDF
    BACKGROUND: The diagnosis of probable behavioral variant of fronto-temporal dementia (bvFTD) according to current criteria requires the imaging evidence of frontal and/or anterior temporal atrophy or hypoperfusion/hypometabolism. Different variants of this pattern of brain involvement may, however, be found in individual cases, supporting the presence of heterogeneous phenotypes. OBJECTIVE: We examined in a case-by-case approach the FDG-PET metabolic patterns of patients fulfilling clinical criteria for probable bvFTD, assessing the presence and frequency of specific FDG-PET features. MATERIALS AND METHODS: Fifty two FDG-PET scans of probable bvFTD patients were retrospectively analyzed together with clinical and neuropsychological data. Neuroimaging experts rated the FDG-PET hypometabolism maps obtained at the single-subject level with optimized voxel-based Statistical Parametric Mapping (SPM). The functional metabolic heterogeneity was further tested by hierarchical cluster analysis and principal component analysis (PCA). RESULTS: Both the SPM maps and cluster analysis identified two major variants of cerebral hypometabolism, namely the "frontal" and the "temporo-limbic", which were correlated with different cognitive profiles. Executive and language deficits were the cognitive hallmark in the "frontal" subgroup, while poor encoding and recall on long-term memory tasks was typical of the "temporo-limbic" subgroup. DISCUSSION: SPM single-subject analysis indicates distinct patterns of brain dysfunction in bvFTD, coupled with specific clinical features, suggesting different profiles of neurodegenerative vulnerability. These findings have important implications for the early diagnosis of bvFTD and for the application of the recent international consensus criteria

    Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells

    Get PDF
    Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation

    Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting

    Get PDF
    Diagnostic accuracy in FDG-PET imaging highly depends on the operating procedures. In this clinical study on dementia, we compared the diagnostic accuracy at a single-subject level of a) Clinical Scenarios, b) Standard FDG Images and c) Statistical Parametrical (SPM) Maps generated via a new optimized SPM procedure. We evaluated the added value of FDG-PET, either Standard FDG Images or SPM Maps, to Clinical Scenarios. In 88 patients with neurodegenerative diseases (Alzheimer's Disease—AD, Frontotemporal Lobar Degeneration—FTLD, Dementia with Lewy bodies—DLB and Mild Cognitive Impairment—MCI), 9 neuroimaging experts made a forced diagnostic decision on the basis of the evaluation of the three types of information. There was also the possibility of a decision of normality on the FDG-PET images. The clinical diagnosis confirmed at a long-term follow-up was used as the gold standard. SPM Maps showed higher sensitivity and specificity (96% and 84%), and better diagnostic positive (6.8) and negative (0.05) likelihood ratios compared to Clinical Scenarios and Standard FDG Images. SPM Maps increased diagnostic accuracy for differential diagnosis (AD vs. FTD; beta 1.414, p = 0.019). The AUC of the ROC curve was 0.67 for SPM Maps, 0.57 for Clinical Scenarios and 0.50 for Standard FDG Images. In the MCI group, SPM Maps showed the highest predictive prognostic value (mean LOC = 2.46), by identifying either normal brain metabolism (exclusionary role) or hypometabolic patterns typical of different neurodegenerative conditions

    Increased Bone Marrow Interleukin-7 (IL-7)/IL-7R Levels but Reduced IL-7 Responsiveness in HIV-Positive Patients Lacking CD4+ Gain on Antiviral Therapy

    Get PDF
    Background: The bone marrow (BM) cytokine milieu might substantially affect T-lymphocyte homeostasis in HIV-positive individuals. Interleukin-7 (IL-7) is a bone marrow-derived cytokine regulating T-cell homeostasis through a CD4+-driven feedback loop. CD4+ T-lymphopenia is associated with increased free IL-7 levels and reduced IL-7R expression/function, which are only partially reverted by highly active antiretroviral therapy (HAART). We investigated the BM production, peripheral expression and signaling (pStat5+ and Bcl-2+ CD4+/CD8+ T cells) of IL-7/IL-7Ra in 30 HAART-treated HIV-positive patients who did not experience CD4+ recovery (CD4+ #200/ml) and who had different levels of HIV viremia; these patients included 18 immunological nonresponders (INRs; HIV-RNA#50), 12 complete failures (CFs; HIV-RNA.1000), and 23 HIVseronegative subjects. Methods: We studied plasma IL-7 levels, IL-7Ra+CD4+/CD8+ T-cell proportions, IL-7Ra mRNA expression in PBMCs, spontaneous IL-7 production by BM mononuclear cells (BMMCs), and IL-7 mRNA/IL-7Ra mRNA in BMMC-derived stromal cells (SCs). We also studied T-cell responsiveness to IL-7 by measuring the proportions of pStat5+ and Bcl-2+ CD4+/CD8+ T cells. Results: Compared to HIV-seronegative controls, CFs and INRs presented elevated plasma IL-7 levels and lower IL-7Ra CD4+/CD8+ cell-surface expression and peripheral blood production, confirming the most relevant IL-7/IL-7R disruption. Interestingly, BM investigation revealed a trend of higher spontaneous IL-7 production in INRs (p = .09 vs. CFs) with a nonsignificant trend toward higher IL-7-Ra mRNA levels in BMMC-derived stromal cells. However, upon IL-7 stimulation, the proportion of pStat5+CD4+ T cells did not increase in INRs despite higher constitutive levels (p = .06); INRs also displayed lower Bcl-2+CD8+ T-cell proportions than controls (p = .04). Conclusions: Despite severe CD4+ T-lymphopenia and a disrupted IL-7/IL-7R profile in the periphery, INRs display elevated BM IL-7/IL-7Ra expression but impaired T-cell responsiveness to IL-7, suggesting the activity of a central compensatory pathway targeted to replenish the CD4+ compartment, which is nevertheless inappropriate to compensate the dysfunctional signaling through IL-7 receptor

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial

    Get PDF

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore