930 research outputs found

    Role of the Centrosomal MARK4 Protein in Gliomagenesis

    Get PDF

    The Ubiquitin Gene Expression Pattern and Sensitivity to UBB and UBC Knockdown Differentiate Primary 23132/87 and Metastatic MKN45 Gastric Cancer Cells

    Get PDF
    Gastric cancer (GC) is one of the most common and lethal cancers. Alterations in the ubiquitin (Ub) system play key roles in the carcinogenetic process and in metastasis development. Overexpression of transcription factors YY1, HSF1 and SP1, known to regulate Ub gene expression, is a predictor of poor prognosis and shorter survival in several cancers. In this study, we compared a primary (23132/87) and a metastatic (MKN45) GC cell line. We found a statistically significant higher expression of three out of four Ub coding genes, UBC, UBB and RPS27A, in MKN45 compared to 23132/87. However, while the total Ub protein content and the distribution of Ub between the conjugated and free pools were similar in these two GC cell lines, the proteasome activity was higher in MKN45. Ub gene expression was not affected upon YY1, HSF1 or SP1 small interfering RNA (siRNA) transfection, in both 23132/87 and MKN45 cell lines. Interestingly, the simultaneous knockdown of UBB and UBC mRNAs reduced the Ub content in both cell lines, but was more critical in the primary GC cell line 23132/87, causing a reduction in cell viability due to apoptosis induction and a decrease in the oncoprotein and metastatization marker β-catenin levels. Our results identify UBB and UBC as pro-survival genes in primary gastric adenocarcinoma 23132/87 cells

    Effects of Starter Cultures and Type of Casings on the Microbial Features and Volatile Profile of Fermented Sausages

    Get PDF
    In the literature, the effect of the type of casing on fermented sausages is quite unexplored, while several studies are focused on the impact of starter cultures. Therefore, this paper studied the effect of three commercial starter cultures and two casings (natural or collagen) on Italian fermented sausages. Physico-chemical parameters (aw, pH, weight loss), microbiota, aroma profile and sensory analysis were evaluated. Results showed that collagen casings promoted a higher reduction of pH and weight loss. Concerning the microbiota, samples with natural casing had higher counts of lactic acid bacteria, while yeast proliferation was promoted in those with collagen. Regardless of the starters and casings applied, levels of enterococci and Enterobacteriaceae were low (≤2 log CFU/g). The aroma profile was significantly affected by casing: despite the starter applied, the presence of collagen casing favoured acid accumulation (mainly acetate and butanoate) and reduction of ketones. Sensory analysis highlighted significant differences only for odour, colour intensity and sourness. The differences observed suggest that collagen casings may provide a greater availability of oxygen. Overall, casings rather than starter cultures impact the microbial and sensorial features of fermented sausages

    The Past, Present, and Future of Non-Viral CAR T Cells

    Full text link
    Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation

    Activation of NRF2 and ATF4 Signaling by the Pro-Glutathione Molecule I-152, a Co-Drug of N-Acetyl-Cysteine and Cysteamine

    Get PDF
    I-152 combines two pro-glutathione (GSH) molecules, namely N-acetyl-cysteine (NAC) and cysteamine (MEA), to improve their potency. The co-drug efficiently increases/replenishes GSH levels in vitro and in vivo; little is known about its mechanism of action. Here we demonstrate that I-152 not only supplies GSH precursors, but also activates the antioxidant kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 (KEAP1/NRF2) pathway. The mechanism involves disulfide bond formation between KEAP1 cysteine residues, NRF2 stabilization and enhanced expression of the Îł-glutamil cysteine ligase regulatory subunit. Accordingly, a significant increase in GSH levels, not reproduced by treatment with NAC or MEA alone, was found. Compared to its parent compounds, I-152 delivered NAC more efficiently within cells and displayed increased reactivity to KEAP1 compared to MEA. While at all the concentrations tested, I-152 activated the NRF2 pathway; high doses caused co-activation of activating transcription factor 4 (ATF4) and ATF4-dependent gene expression through a mechanism involving Atf4 transcriptional activation rather than preferential mRNA translation. In this case, GSH levels tended to decrease over time, and a reduction in cell proliferation/survival was observed, highlighting that there is a concentration threshold which determines the transition from advantageous to adverse effects. This body of evidence provides a molecular framework for the pro-GSH activity and dose-dependent effects of I-152 and shows how synergism and cross reactivity between different thiol species could be exploited to develop more potent drugs

    Interphase Design of Cellulose Nanocrystals/Poly(hydroxybutyrate- ran-valerate) Bionanocomposites for Mechanical and Thermal Properties Tuning

    Get PDF
    Poly[(3-hydroxybutyrate)-ran-(3-hydroxyvalerate)] (PHBV) is a bacterial polyester with a strong potential as a substitute for oil-based thermoplastics due to its biodegradability and renewability. However, its inherent slow crystallization rate limits its thermomechanical properties and therefore its applications. In this work, surface-modified cellulose nanocrystals (CNCs) have been investigated as green and biosourced nucleating and reinforcing agent for PHBV matrix. Different ester moieties from the CNCs were thereby produced through a green one-pot hydrolysis/Fisher esterification. Beyond the improved dispersion, the CNCs surface esterification affected the thermal and thermomechanical properties of PHBV. The results demonstrate that butyrate-modified CNCs, mimicking the PHBV chemical structure, brought a considerable improvement toward the CNCs/matrix interface, leading to an enhancement of the PHBV thermomechanical properties via a more efficient stress transfer, especially above its glass transition

    Different FDG-PET metabolic patterns at single-subject level in the behavioral variant of fronto-temporal dementia.

    Get PDF
    BACKGROUND: The diagnosis of probable behavioral variant of fronto-temporal dementia (bvFTD) according to current criteria requires the imaging evidence of frontal and/or anterior temporal atrophy or hypoperfusion/hypometabolism. Different variants of this pattern of brain involvement may, however, be found in individual cases, supporting the presence of heterogeneous phenotypes. OBJECTIVE: We examined in a case-by-case approach the FDG-PET metabolic patterns of patients fulfilling clinical criteria for probable bvFTD, assessing the presence and frequency of specific FDG-PET features. MATERIALS AND METHODS: Fifty two FDG-PET scans of probable bvFTD patients were retrospectively analyzed together with clinical and neuropsychological data. Neuroimaging experts rated the FDG-PET hypometabolism maps obtained at the single-subject level with optimized voxel-based Statistical Parametric Mapping (SPM). The functional metabolic heterogeneity was further tested by hierarchical cluster analysis and principal component analysis (PCA). RESULTS: Both the SPM maps and cluster analysis identified two major variants of cerebral hypometabolism, namely the "frontal" and the "temporo-limbic", which were correlated with different cognitive profiles. Executive and language deficits were the cognitive hallmark in the "frontal" subgroup, while poor encoding and recall on long-term memory tasks was typical of the "temporo-limbic" subgroup. DISCUSSION: SPM single-subject analysis indicates distinct patterns of brain dysfunction in bvFTD, coupled with specific clinical features, suggesting different profiles of neurodegenerative vulnerability. These findings have important implications for the early diagnosis of bvFTD and for the application of the recent international consensus criteria

    Dexamethasone improves redox state in ataxia telangiectasia cells by promoting an NRF2-mediated antioxidant response

    Get PDF
    partially_open10noAtaxia telangiectasia (A-T) is a rare incurable neurodegenerative disease caused by biallelic mutations in the gene for ataxia-telangiectasia mutated (ATM). The lack of a functional ATM kinase leads to a pleiotropic phenotype, and oxidative stress is considered to have a crucial role in the complex physiopathology. Recently, steroids have been shown to reduce the neurological symptoms of the disease, although the molecular mechanism of this effect is largely unknown. In the present study, we have demonstrated that dexamethasone treatment of A-T lymphoblastoid cells increases the content of two of the most abundant antioxidants [glutathione (GSH) and NADPH] by up to 30%. Dexamethasone promoted the nuclear accumulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 to drive expression of antioxidant pathways involved in GSH synthesis and NADPH production. The latter effect was via glucose 6-phosphate dehydrogenase activation, as confirmed by increased enzyme activity and enhancement of the pentose phosphate pathway rate. This evidence indicates that glucocorticoids are able to potentiate antioxidant defenses to counteract oxidative stress in ataxia telangiectasia, and also reveals an unexpected role for dexamethasone in redox homeostasis and cellular antioxidant activity.openBiagiotti, Sara; Menotta, Michele; Orazi, Sara; Spapperi, Chiara; Brundu, Serena; Fraternale, Alessandra; Bianchi, Marzia; Rossi, Luigia; Chessa, Luciana; Magnani, MauroBiagiotti, Sara; Menotta, Michele; Orazi, Sara; Spapperi, Chiara; Brundu, Serena; Fraternale, Alessandra; Bianchi, Marzia; Rossi, Luigia; Chessa, Luciana; Magnani, Maur
    • …
    corecore