622 research outputs found
Polaron relaxation in ferroelectric thin films
We report a dielectric relaxation in ferroelectric thin films of the ABO3
family. We have compared films of different compositions with several growth
modes: sputtering (with and without magnetron) and sol-gel. The relaxation was
observed at cryogenic temperature (T<100K) for frequencies from 100Hz up to
10MHz. This relaxation activation energy is always lower than 200meV. It is
very similar to the polaron relaxation that we reported in the parent bulk
perovskites. Being independent of the materials size, morphology and texture,
this relaxation can be a useful probe of defects in actual integrated
capacitors with no need for specific shapin
Virtual and augmented reality as enablers for improving the service on distributed assets
The evolution of Augment and Virtual Reality is enabling new solutions. This paper addresses creation of applications to support service and maintenance of distributed systems. Indeed this approach could be applied to devices provided as service for industrial and individual use and could introduce new capabilities in terms of training for operators, control and remote service support. The paper presents a case study devoted to lead the introduction of these innovative solutions in industrial and health care system
Frontal brain asymmetries as effective parameters to assess the quality of audiovisual stimuli perception in adult and young cochlear implant users
How is music perceived by cochlear implant (CI) users? This question arises as "the next step" given the impressive performance obtained by these patients in language perception. Furthermore, how can music perception be evaluated beyond self-report rating, in order to obtain measurable data? To address this question, estimation of the frontal electroencephalographic (EEG) alpha activity imbalance, acquired through a 19-channel EEG cap, appears to be a suitable instrument to measure the approach/withdrawal (AW index) reaction to external stimuli. Specifically, a greater value of AW indicates an increased propensity to stimulus approach, and vice versa a lower one a tendency to withdraw from the stimulus. Additionally, due to prelingually and postlingually deafened pathology acquisition, children and adults, respectively, would probably differ in music perception. The aim of the present study was to investigate children and adult CI users, in unilateral (UCI) and bilateral (BCI) implantation conditions, during three experimental situations of music exposure (normal, distorted and mute). Additionally, a study of functional connectivity patterns within cerebral networks was performed to investigate functioning patterns in different experimental populations. As a general result, congruency among patterns between BCI patients and control (CTRL) subjects was seen, characterised by lowest values for the distorted condition (vs. normal and mute conditions) in the AW index and in the connectivity analysis. Additionally, the normal and distorted conditions were significantly different in CI and CTRL adults, and in CTRL children, but not in CI children. These results suggest a higher capacity of discrimination and approach motivation towards normal music in CTRL and BCI subjects, but not for UCI patients. Therefore, for perception of music CTRL and BCI participants appear more similar than UCI subjects, as estimated by measurable and not self-reported parameters
Autonomous systems for operations in critical environments
This paper proposes an environment devoted to simulate the use of autonomous systems in the context of space exploratory missions and
operations; this research focuses on supporting engineering of autonomous systems and of their innovative artificial intelligences through
interoperable simulation. The proposed approach enables also development of training and educational solutions for use of robots and autonomous systems in space critical environments. The paper addresses different application areas including robotic inventory and
warehouse solutions, intelligent space guard systems, drones for supporting extravehicular activities and for managing accidents and health
emergencies. The paper investigates the potential of autonomous systems as well as their capability to interoperate with other systems and with
humans, especially in critical environments. Finally, the paper presents the existing researches for interoperable simulators devoted to address
these challenging topics within Simulation Exploratory Experience initiative
Numerical simulation of dark lanes in post-flare supra-arcade
We integrate the MHD ideal equations to simulate dark void sunwardly moving
structures in post--flare supra--arcades. We study the onset and evolution of
the internal plasma instability to compare with observations and to gain
insight into physical processes and characteristic parameters of these
phenomena. The numerical approach uses a finite-volume Harten-Yee TVD scheme to
integrate the 1D1/2 MHD equations specially designed to capture supersonic flow
discontinuities. The integration is performed in both directions, the sunward
radial one and the transverse to the magnetic field. For the first time, we
numerically reproduce observational dark voids described in Verwichte et al.
(2005). We show that the dark tracks are plasma vacuums generated by the
bouncing and interfering of shocks and expansion waves, upstream an initial
slow magnetoacoustic shock produced by a localized deposition of energy modeled
with a pressure perturbation. The same pressure perturbation produces a
transverse to the field or perpendicular magnetic shock giving rise to
nonlinear waves that compose the kink--like plasma void structures, with the
same functional sunward decreasing phase speed and constancy with height of the
period, as those determined by the observations.Comment: Accepted MNRAS, 6 pages, 7 figure
Relativistic Hartree-Bogoliubov description of the deformed ground-state proton emitters
Ground-state properties of deformed proton-rich odd-Z nuclei in the region
are described in the framework of Relativistic Hartree
Bogoliubov (RHB) theory. One-proton separation energies and ground-state
quadrupole deformations that result from fully self-consistent microscopic
calculations are compared with available experimental data. The model predicts
the location of the proton drip-line, the properties of proton emitters beyond
the drip-line, and provides information about the deformed single-particle
orbitals occupied by the odd valence proton.Comment: 9 pages, RevTeX, 3 PS figures, submitted Phys. Rev. Letter
Role of dynamical particle-vibration coupling in reconciliation of the puzzle for spherical proton emitters
It has been observed that decay rate for proton emission from
single particle state is systematically quenched compared with the prediction
of a one dimensional potential model although the same model successfully
accounts for measured decay rates from and states. We
reconcile this discrepancy by solving coupled-channels equations, taking into
account couplings between the proton motion and vibrational excitations of a
daughter nucleus. We apply the formalism to proton emitting nuclei
Re to show that there is a certain range of parameter set of the
excitation energy and the dynamical deformation parameter for the quadrupole
phonon excitation which reproduces simultaneously the experimental decay rates
from the 2, 3 and 1 states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure
A surveillance system to assess the need for updating systematic reviews.
BackgroundSystematic reviews (SRs) can become outdated as new evidence emerges over time. Organizations that produce SRs need a surveillance method to determine when reviews are likely to require updating. This report describes the development and initial results of a surveillance system to assess SRs produced by the Agency for Healthcare Research and Quality (AHRQ) Evidence-based Practice Center (EPC) Program.MethodsTwenty-four SRs were assessed using existing methods that incorporate limited literature searches, expert opinion, and quantitative methods for the presence of signals triggering the need for updating. The system was designed to begin surveillance six months after the release of the original review, and then ceforth every six months for any review not classified as being a high priority for updating. The outcome of each round of surveillance was a classification of the SR as being low, medium or high priority for updating.ResultsTwenty-four SRs underwent surveillance at least once, and ten underwent surveillance a second time during the 18 months of the program. Two SRs were classified as high, five as medium, and 17 as low priority for updating. The time lapse between the searches conducted for the original reports and the updated searches (search time lapse - STL) ranged from 11 months to 62 months: The STL for the high priority reports were 29 months and 54 months; those for medium priority reports ranged from 19 to 62 months; and those for low priority reports ranged from 11 to 33 months. Neither the STL nor the number of new relevant articles was perfectly associated with a signal for updating. Challenges of implementing the surveillance system included determining what constituted the actual conclusions of an SR that required assessing; and sometimes poor response rates of experts.ConclusionIn this system of regular surveillance of 24 systematic reviews on a variety of clinical interventions produced by a leading organization, about 70% of reviews were determined to have a low priority for updating. Evidence suggests that the time period for surveillance is yearly rather than the six months used in this project
- …