3,991 research outputs found
Hybrid solutions to the feature interaction problem
In this paper we assume a competitive marketplace where the features are developed by different enterprises, which cannot or will not exchange information. We present a classification of feature interaction in this setting and introduce an on-line technique which serves as a basis for the two novel <i>hybrid</i> approaches presented. The approaches are hybrid as they are neither strictly off-line nor on-line, but combine aspects of both. The two approaches address different kinds of feature interactions, and thus are complimentary. Together they provide a complete solution by addressing interaction detection and resolution. We illustrate the techniques within the communication networks domain
Snowmass 2001: Jet Energy Flow Project
Conventional cone jet algorithms arose from heuristic considerations of LO
hard scattering coupled to independent showering. These algorithms implicitly
assume that the final states of individual events can be mapped onto a unique
set of jets that are in turn associated with a unique set of underlying hard
scattering partons. Thus each final state hadron is assigned to a unique
underlying parton. The Jet Energy Flow (JEF) analysis described here does not
make such assumptions. The final states of individual events are instead
described in terms of flow distributions of hadronic energy. Quantities of
physical interest are constructed from the energy flow distribution summed over
all events. The resulting analysis is less sensitive to higher order
perturbative corrections and the impact of showering and hadronization than the
standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on
QCD and Strong Interactions at Snowmass 200
Co- Creating a Blended learning Curriculum in Transition to Higher Education: A Student Viewpoint.
Involving students in the design and development of their curriculum is well established in Higher
Education but comes with challenges and concerns for both the staff and students. This is not a
simple concept and understanding more about the experiences of the student co-creators supports
others in developing this aspect of curriculum design. This small scale project uses the individual
and collective voices of five second year students who worked with one programme team to
co-create a transition module to support new learners entering university. The study explores the
co-creation experience and the student’s response to the feedback their co-created curriculum
received when it was run for the first time. The study was designed to consider if co-creation of a
module was beneficial to the students involved in its co-creation. The findings explored issues in
relation to the experience, the actual design of the materials and how this could be developed. The
students enjoyed the co-creation, felt appreciated and listened to and felt that this was a positive
learning experience. They realised how difficult it is to please everybody and gained a much better
appreciation of building learning experiences for others to use. The research highlights the fact
that with regards to curriculum development within universities that students should be involved
in co-creation as they have an understanding of the requirements of learning form a student perspective.
Whilst student satisfaction cannot be necessarily be measured directly, the anecdotal
comments from students involved in this project as they graduate are the values they place on the
opportunities afforded to them
Predicate Abstraction for Linked Data Structures
We present Alias Refinement Types (ART), a new approach to the verification
of correctness properties of linked data structures. While there are many
techniques for checking that a heap-manipulating program adheres to its
specification, they often require that the programmer annotate the behavior of
each procedure, for example, in the form of loop invariants and pre- and
post-conditions. Predicate abstraction would be an attractive abstract domain
for performing invariant inference, existing techniques are not able to reason
about the heap with enough precision to verify functional properties of data
structure manipulating programs. In this paper, we propose a technique that
lifts predicate abstraction to the heap by factoring the analysis of data
structures into two orthogonal components: (1) Alias Types, which reason about
the physical shape of heap structures, and (2) Refinement Types, which use
simple predicates from an SMT decidable theory to capture the logical or
semantic properties of the structures. We prove ART sound by translating types
into separation logic assertions, thus translating typing derivations in ART
into separation logic proofs. We evaluate ART by implementing a tool that
performs type inference for an imperative language, and empirically show, using
a suite of data-structure benchmarks, that ART requires only 21% of the
annotations needed by other state-of-the-art verification techniques
Massive stars exploding in a He-rich circumstellar medium. IV. Transitional Type Ibn Supernovae
We present ultraviolet, optical and near-infrared data of the Type Ibn
supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at
peak of M(R) = -18.86 +- 0.21. Its early light curve shows similarities with
normal SNe Ib, with a rise to maximum slower than most SNe Ibn. The spectra are
dominated by a blue continuum at early stages, with narrow P-Cygni He I lines
indicating the presence of a slow-moving, He-rich circumstellar medium. At
later epochs the spectra well match those of the prototypical SN Ibn 2006jc,
although the broader lines suggest that a significant amount of He was still
present in the stellar envelope at the time of the explosion. SN 2011hw is
somewhat different. It was discovered after the first maximum, but the light
curve shows a double-peak. The absolute magnitude at discovery is similar to
that of the second peak (M(R) = -18.59 +- 0.25), and slightly fainter than the
average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN
2006jc, coronal lines and narrow Balmer lines are cleary detected. This
indicates substantial interaction of the SN ejecta with He-rich, but not
H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a
transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the
spectro-photometric evolution favours a H-deprived Wolf-Rayet progenitor (of
WN-type), we agree with the conclusion of Smith et al. (2012) that the
precursor of SN 2011hw was likely in transition from a luminous blue variable
to an early Wolf-Rayet (Ofpe/WN9) stage.Comment: 23 pages, 11 figures, 6 tables. Accepted by MNRA
SOME ABSTRACT PROPERTIES OF SEMIGROUPS APPEARING IN SUPERCONFORMAL THEORIES
A new type of semigroups which appears while dealing with
superconformal symmetry in superstring theories is considered. The ideal series
having unusual abstract properties is constructed. Various idealisers are
introduced and studied. The ideal quasicharacter is defined. Green's relations
are found and their connection with the ideal quasicharacter is established.Comment: 11 page
Snowmass 2001: Jet Energy Flow Project
Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering coupled to independent showering. These algorithms implicitly assume that the final states of individual events can be mapped onto a unique set of jets that are in turn associated with a unique set of underlying hard scattering partons. Thus each final state hadron is assigned to a unique underlying parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions. The final states of individual events are instead described in terms of flow distributions of hadronic energy. Quantities of physical interest are constructed from the energy flow distribution summed over all events. The resulting analysis is less sensitive to higher order perturbative corrections and the impact of showering and hadronization than the standard cone algorithms
- …
