15 research outputs found

    Decline in Iran’s groundwater recharge

    Get PDF
    Groundwater recharge feeds aquifers supplying fresh-water to a population over 80 million in Iran—a global hotspot for groundwater depletion. Using an extended database comprising abstractions from over one million groundwater wells, springs, and qanats, from 2002 to 2017, here we show a significant decline of around −3.8 mm/yr in the nationwide groundwater recharge. This decline is primarily attributed to unsustainable water and environmental resources management, exacerbated by decadal changes in climatic conditions. However, it is important to note that the former’s contribution outweighs the latter. Our results show the average annual amount of nationwide groundwater recharge (i.e., ~40 mm/yr) is more than the reported average annual runoff in Iran (i.e., ~32 mm/yr), suggesting the surface water is the main contributor to groundwater recharge. Such a decline in groundwater recharge could further exacerbate the already dire aquifer depletion situation in Iran, with devastating consequences for the country’s natural environment and socio-economic development

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Hyper-Nutrient Enrichment Status in the Sabalan Lake, Iran

    No full text
    Lakes/reservoirs are rapidly deteriorating from cultural eutrophication due to anthropogenic factors. In this study, we aimed to (1) explore nutrient levels in the Sabalan dam reservoir (SDR) of northwest Iran, (2) determine the reservoir water fertility using the total phosphorus (TP) based and total nitrogen (TN) based Carlson trophic state indices, and (3) specify primary limiting factors for the reservoir eutrophication. Our field observations showed a state of hyper-nutrient enrichment in the SDR. The highest variation of TN in the reservoir water column happened when the reservoir was severely stratified (in August) while the highest variation of TP took place when the thermocline was attenuated with the deepening of the epilimnion (in October). Both TP and TN based trophic indicators classified the SDR as a hypereutrophic lake. TN:TP molar ratio averaged at the epilimnion indicated a P–deficiency in the reservoir during warm months whilst it suggested a co–deficiency of P and N in cold months. Given the hyper-nutrient enrichment state in the reservoir, other drivers such as water residence time (WRT) can also act as the main contributor of eutrophication in the SDR. We found that WRT in the SDR varied from hundreds to thousands of days, which was much longer than that of other reservoirs/lakes with the same and even much greater storage capacity. Therefore, both hyper-nutrient enrichment and WRT mainly controlled eutrophication in the reservoir. Given time consuming and expensive management practices for reducing nutrients in the watershed, changes in the SDR operation are suggested to somewhat recover its hypereutrophic state in the short-term. However, strategic long-term recovery plans are required to reduce the transition of nutrients from the watershed to the SDR

    Alarming carcinogenic and non-carcinogenic risk of heavy metals in Sabalan dam reservoir, Northwest of Iran

    No full text
    Abstract This research aims to assess contamination status of water and sediment in Sabalan dam reservoir (SDR) and evaluate the impact of water withdrawal depths on the carcinogenic and non-carcinogenic risks of metals for exposed people. Results of metal pollution indices revealed some degree of pollution in water and sediment of the reservoir, especially associated with arsenic. Risk assessment of metals in water of the SDR for non-carcinogenic materials through different scenarios of water withdrawal depth revealed that consuming water from the depth of 10 m can be somewhat troublesome to human health. The carcinogenic risk of arsenic from depth of 10 m of the reservoir was about four times greater than that from water surface. Minimum carcinogenic risk of consuming water in the reservoir was found to be 1.69 × 10E-4, which is higher than the maximum limit proposed by the U.S. EPA, indicating the water consumption from the SDR can result in harmful effects on human health

    Iran’s groundwater hydrochemistry

    No full text
    Abstract Iran’s groundwater hydrochemistry has not been well understood. In this study, Iran’s groundwater hydrochemistry is evaluated using a rich, ground-trusted data sampled from 9,468 wells distributed across the country in 2011. Twelve groundwater quality parameters were analyzed in each sample, resulting in 113,616 parameters over the study period. Examination of anions-cations shows that concentrations of sodium, calcium, chloride, and sulphate are higher than the acceptable threshold for drinking-use suggested by the World Health Organization in about 40%, 21%, 25%, and 20% of the samples, respectively. The results of the water quality index reveal that most of the groundwater resources in the central, southern and eastern regions of Iran, which supply the majority of the domestic water for populated cities, do not meet the requirements for drinking-use. Although the groundwater in northern parts fulfills the requirements for irrigation-use, it is only suitable for irrigation of salinity-friendly crops in central, eastern and southern regions. Ionic types and hydrochemistry facies indicate the dominance of mix water type in 13 out of 30 of Iran’s sub-basins, followed by sodium-chloride water type in nine sub-basins. Local geology and lithology are mainly attributed to the distribution of groundwater facies in Iran. In general, our findings reveal a distinctive relationship between Iran’s geological-geomorphological features and hydrochemical facies/groundwater quality. The findings can be used in the formulation of new strategies and policies for Iran’s groundwater quality management in the future

    A non-threshold model to estimate carcinogenic risk of nitrate-nitrite in drinking water

    No full text
    Understanding nitrate–nitrite (3−2) levels in drinking water and associated non-carcinogenic and carcinogenic health risks are essential to protect public health safety. The non-carcinogenic risk assessment of 3–2 in drinking water has been well documented, however, there remains a knowledge gap in understanding and quantification of the carcinogenic risk of 3–2. This study develops a non-threshold–based model for estimation of carcinogenic risk of 3–2 ingested through drinking water for a densely populated urban area with a case study of Tehran's potable water (TPW). In this regard, 200 tap water samples from different parts of the city were taken in wet (May 2018) and dry (October 2018) periods to determine 3– concentration in the TPW and the associated health risks across different grounds of end-users. Sampling results reveal higher concentrations of 3– during the dry period, which can be associated to the significant contribution of nitrogen–rich groundwater in supplying the city's water demands during the dry period. Findings suggest concerns associated with the non-carcinogenic risk of 3– in the TPW, especially for children. More than 55% of the samples taken during the dry period show a positive carcinogenic risk for different groups of end-users (68% for men, 72% for women, and 56% for children) whilst just 8% of the samples are deemed unsafe with regards to the permissible level in drinking water, i.e. 50 mg/L. Approximately, 45% of the samples taken during the wet period show a positive carcinogenic risk for adults whilst the maximum concentration of was about 23 mg/L, i.e. two times less than the permissible level in drinking water. The findings emphasize on the necessity of reducing the permissible level of in drinking water, set out by the existing water quality standards, to safeguard public health against the carcinogenic risks. The model developed within this study recommends the urgent need for reduction of level in Tehran's water resources to protect public health of over 13 M population who incessantly use the TPW

    Anthropogenic depletion of Iran’s aquifers

    No full text
    Abstract Global groundwater assessments rank Iran among countries with the highest groundwater depletion rate using coarse spatial scales that hinder detection of regional imbalances between renewable groundwater supply and human withdrawals. Herein, we use in situ data from 12,230 piezometers, 14,856 observation wells, and groundwater extraction points to provide ground-based evidence about Iran’s widespread groundwater depletion and salinity problems. While the number of groundwater extraction points increased by 84.9% from 546,000 in 2002 to over a million in 2015, the annual groundwater withdrawal decreased by 18% (from 74.6 to 61.3 km³/y) primarily due to physical limits to fresh groundwater resources (i.e., depletion and/or salinization). On average, withdrawing 5.4 km³/y of nonrenewable water caused groundwater tables to decline 10 to 100 cm/y in different regions, averaging 49 cm/y across the country. This caused elevated annual average electrical conductivity (EC) of groundwater in vast arid/semiarid areas of central and eastern Iran (16 out of 30 subbasins), indicating “very high salinity hazard” for irrigation water. The annual average EC values were generally lower in the wetter northern and western regions, where groundwater EC improvements were detected in rare cases. Our results based on high-resolution groundwater measurements reveal alarming water security threats associated with declining fresh groundwater quantity and quality due to many years of unsustainable use. Our analysis offers insights into the environmental implications and limitations of water-intensive development plans that other water-scarce countries might adopt

    Complex dynamics of water quality mixing in a warm mono-mictic reservoir

    No full text
    Abstract Cycling of water quality constituents in lakes is affected by thermal stratification and homo-thermal conditions and other factors such as oligotrophication, eutrophication, and microbial activities. In addition, hydrological variability can cause greater differences in water residence time and cycling of constituents in man-made lakes (reservoirs) than in natural lakes. Thus, investigations are needed on vertical mixing of constituents in new impounded reservoirs, especially those constructed to supply domestic water. In this study, sampling campaigns were conducted in the Sabalan reservoir, Iran, to investigate vertical changes in constituent concentrations during the year in periods with thermal stratification and homo-thermal conditions. The results revealed incomplete mixing of constituents, even during cold months when the reservoir was homo-thermal. These conditions interacted to create a bottom-up regulated reservoir with sediment that released settled pollutants, impairing water quality in the Sabalan reservoir during both thermal stratification and homo-thermal conditions. Analysis of total nitrogen and total phosphorus concentrations revealed that the reservoir was eutrophic. External pollution loads, internal cycling of pollutants diffusing out from bottom sediments, reductions in inflow to the reservoir, and reservoir operations regulated vertical mixing and concentrations of constituents in the Sabalan reservoir throughout the year

    Spatiotemporal changes in Iranian rivers’ discharge

    No full text
    Abstract Trends in river flow at national scale in Iran remain largely unclear, despite good coverage of river flow at multiple monitoring stations. To address this gap, this study explores the changes in Iranian rivers’ discharge using regression and analysis of variance methods to historically rich data measured at hydrometric stations. Our assessment is performed for 139 selected hydrometric stations located in Iranian data-rich basins that cover around 97% of the country’s rivers with more than 30 years of observations. Our findings show that most of the studied Iran’s rivers (>56%) have undergone a downward trend (P value < 0.1) in mean annual flow that is 2.5 times bigger than that obtained for the large world’s rivers, resulting in a change from permanent to intermittent for around 20% of rivers in Iran’s subbasins. Given no significant change observed in the main natural drivers of Iranian rivers’ discharge, these findings reveal the country’s surface fresh-water shortage was caused dominantly by anthropogenic disturbances rather than variability in climate parameters. It may even indicate the development of new river regimes with deep implications for future surface fresh-water storage in the country. This research’s findings improve our understanding of changes in Iranian rivers’ discharge and provide beneficial insights for sustainable management of water resources in the country

    Iran’s agriculture in the anthropocene

    No full text
    Abstract The anthropogenic impacts of development and frequent droughts have limited Iran’s water availability. This has major implications for Iran’s agricultural sector which is responsible for about 90% of water consumption at the national scale. This study investigates if declining water availability impacted agriculture in Iran. Using the Mann‐Kendall and Sen’s slope estimator methods, we explored the changes in Iran’s agricultural production and area during the 1981–2013 period. Despite decreasing water availability during this period, irrigated agricultural production and area continuously increased. This unsustainable agricultural development, which would have been impossible without the overabstraction of surface and ground water resources, has major long‐term water, food, environmental, and human security implications for Iran
    corecore