17 research outputs found

    Annealing study and thermal investigation on bismuth sulfide thin films prepared by chemical bath deposition in basic medium

    Full text link
    This is a post-peer-review, pre-copyedit version of an article published in Applied Physics A 124.2 (2018): 166. The final authenticated version is available online at: http://doi.org/10.1007/s00339-018-1584-7Bismuth sulfide thin films were prepared by chemical bath deposition using thiourea as sulfide ion source in basic medium. First, the effects of both the deposition parameters on films growth as well as the annealing effect under argon and sulfur atmosphere on as-deposited thin films were studied. The parameters were found to be influential using the Doehlert matrix experimental design methodology. Ranges for a maximum surface mass of films (3 mg cm-2) were determined. A well crystallized major phase of bismuth sulfide with stoichiometric composition was achieved at 190°C for 3 hours. The prepared thin films were characterized using Grazing Incidence X-ray diffraction (GIXRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). Second, the band gap energy value was found to be 1.5 eV. Finally, the thermal properties have been studied for the first time by means of the electropyroelectric (EPE) technique. Indeed, the thermal conductivity varied in the range of 1.20 - 0.60 W m-1 K-1 while the thermal diffusivity values increased in terms of the annealing effect ranging from 1.8 to 3.5 10-7 m2s-1This work was financially supported by the Tunisian Ministry of Higher Education and Scientific Research and by the WINCOST (ENE2016-80788-C5-2-R) project funded by the Spanish Ministry of Economy and Competitivenes

    Étude de la cinétique de croissance des couches minces de sulfure d'argent préparées par dépôt chimique en solution

    No full text
    The growth kinetics of silver sulfide films chemically deposited from aqueous silver nitrate-thiourea solutions at pH around 9 is studied as a function of the concentrations in solution, temperature (40 to 80 °C) and hydrodynamic regime. It is found that the growth takes place in a narrow pH window (8.8 to 9.4). It is activated by temperature with an apparent activation energy of 20.4 kJ.mol-1, which is coherent with a diffusion control evidenced by experiments at different hydrodynamic regimes. The overall rate equation has been determined. The ultimate thickness of the films (around 1-2 microns) is actually limited by a parasitic process attributed to unsticking

    Physical investigations on perovskite LaMnO3-δ sprayed thin films for spintronic applications

    No full text
    Oxygen deficient LaMnO3 thin films were successfully grown on glass substrate by spray pyrolysis at 460 °C. XRD studies show oxygen vacancies corresponding to the orthorhombic La4Mn4O11 with (040) preferential orientation. Optical properties were investigated through optical band gap and Urbach energy. The dispersion of the refractive index was discussed in terms of both Cauchy and Wemple & Di-domenico models. Raman spectroscopy shows the band positions corresponding to LaMnO3 with a shift related to oxygen deficiency. Electrical properties were quantified using impedance spectroscopy technique within frequency range of 5 Hz-13 MHz at various temperatures. Both the DC conductivity and relaxation frequency were thermally activated with activation energy around 0.9 eV. Also, AC conductivity was investigated through Jonscher law. Finally, magnetic measurements at room temperature using vibrating sample magnetometer (VSM) technique show ferromagnetic behavior of these ternary sprayed thin films. © 2015 Published by Elsevier Ltd
    corecore