1,491 research outputs found

    Mmf1p, a novel yeast mitochondrial protein conserved throughout evolution and involved in maintenance of the mitochondrial genome

    Get PDF
    A novel protein family (p14.5, or YERO57c/YJGFc) highly conserved throughout evolution has recently been identified. The biological role of these proteins is not yet well characterized. Two members of the p14.5 family are present in the yeast Saccharomyces cerevisiae. In this study, we have characterized some of the biological functions of the two yeast proteins. Mmf1p is a mitochondrial matrix factor, and homologous Mmf1p factor (Hmf1p) copurifies with the soluble cytoplasmic fraction. Δmmf1 cells lose mitochondrial DNA (mtDNA) and have a decreased growth rate, while Δhmf1 cells do not display any visible phenotype. Furthermore, we demonstrate by genetic analysis that Mmf1p does not play a direct role in replication and segregation of the mtDNA. rho(+) Δmmf1 haploid cells can be obtained when tetrads are directly dissected on medium containing a nonfermentable carbon source. Our data also indicate that Mmf1p and Hmf1p have similar biological functions in different subcellular compartments. Hmf1p, when fused with the Mmf1p leader peptide, is transported into mitochondria and is able to functionally replace Mmf1p. Moreover, we show that homologous mammalian proteins are functionally related to Mmf1p. Human p14.5 localizes in yeast mitochondria and rescues the Δmmf1-associated phenotypes. In addition, fractionation of rat liver mitochondria showed that rat p14.5, like Mmf1p, is a soluble protein of the matrix. Our study identifies a biological function for Mmf1p and furthermore indicates that this function is conserved between members of the p14.5 family

    A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    Get PDF
    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects

    Progressive dementia associated with ataxia or obesity in patients with Tropheryma whipplei encephalitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Tropheryma whipplei</it>, the agent of Whipple's disease, causes localised infections in the absence of histological digestive involvement. Our objective is to describe <it>T. whipplei </it>encephalitis.</p> <p>Methods</p> <p>We first diagnosed a patient presenting dementia and obesity whose brain biopsy and cerebrospinal fluid specimens contained <it>T. whipplei </it>DNA and who responded dramatically to antibiotic treatment. We subsequently tested cerebrospinal fluid specimens and brain biopsies sent to our laboratory using <it>T. whipplei </it>PCR assays. PAS-staining and <it>T. whipplei </it>immunohistochemistry were also performed on brain biopsies. Analysis was conducted for 824 cerebrospinal fluid specimens and 16 brain biopsies.</p> <p>Results</p> <p>We diagnosed seven patients with <it>T. whipplei </it>encephalitis who demonstrated no digestive involvement. Detailed clinical histories were available for 5 of them. Regular PCR that targeted a monocopy sequence, PAS-staining and immunohistochemistry were negative; however, several highly sensitive and specific PCR assays targeting a repeated sequence were positive. Cognitive impairments and ataxia were the most common neurologic manifestations. Weight gain was paradoxically observed for 2 patients. The patients' responses to the antibiotic treatment were dramatic and included weight loss in the obese patients.</p> <p>Conclusions</p> <p>We describe a new clinical condition in patients with dementia and obesity or ataxia linked to <it>T. whipplei </it>that may be cured with antibiotics.</p

    Effects of calorie restriction on life span of microorganisms

    Get PDF
    Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 ÎĽm) to thinned sensors (about 240 ÎĽm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 Ă— 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 ÎĽm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC

    Get PDF
    The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip
    • …
    corecore