18 research outputs found

    A novel MLSD receiver architecture for nonlinear channels

    Get PDF
    A new architecture for maximum likelihood sequence detec- tion (MLSD) in nonlinear dispersive channels (NLCs) is presented, and its robustness to inaccurate channel knowledge is analyzed. This architecture is developed by considering a novel orthogonal representation of the NLC, which is exploited to develop a front-end capable of obtaining uncorrelated symbol rate samples, representing a sufficient statistic for information decoding. This front-end is a special form of space-time whitened matched filter (ST-WMF), and the MLSD obtained by using this front-end (ST-WMF-MLSD) requires simple branch metrics due to the signal whitening. The ST-WMF also allows for space-time compression of the equivalent channel, which is exploited for further complexity reduction of the ST-WMF-MLSD. Simulation results show the good trade-off in performance and complexity obtained with the ST-WMF- MLSD, even in the presence of inaccurate channel knowledge.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A novel MLSD receiver architecture for nonlinear channels

    Get PDF
    A new architecture for maximum likelihood sequence detec- tion (MLSD) in nonlinear dispersive channels (NLCs) is presented, and its robustness to inaccurate channel knowledge is analyzed. This architecture is developed by considering a novel orthogonal representation of the NLC, which is exploited to develop a front-end capable of obtaining uncorrelated symbol rate samples, representing a sufficient statistic for information decoding. This front-end is a special form of space-time whitened matched filter (ST-WMF), and the MLSD obtained by using this front-end (ST-WMF-MLSD) requires simple branch metrics due to the signal whitening. The ST-WMF also allows for space-time compression of the equivalent channel, which is exploited for further complexity reduction of the ST-WMF-MLSD. Simulation results show the good trade-off in performance and complexity obtained with the ST-WMF- MLSD, even in the presence of inaccurate channel knowledge.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A novel MLSD receiver architecture for nonlinear channels

    Get PDF
    A new architecture for maximum likelihood sequence detec- tion (MLSD) in nonlinear dispersive channels (NLCs) is presented, and its robustness to inaccurate channel knowledge is analyzed. This architecture is developed by considering a novel orthogonal representation of the NLC, which is exploited to develop a front-end capable of obtaining uncorrelated symbol rate samples, representing a sufficient statistic for information decoding. This front-end is a special form of space-time whitened matched filter (ST-WMF), and the MLSD obtained by using this front-end (ST-WMF-MLSD) requires simple branch metrics due to the signal whitening. The ST-WMF also allows for space-time compression of the equivalent channel, which is exploited for further complexity reduction of the ST-WMF-MLSD. Simulation results show the good trade-off in performance and complexity obtained with the ST-WMF- MLSD, even in the presence of inaccurate channel knowledge.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    The Coronae of AR Lac

    Full text link
    We observed the coronally active eclipsing binary, AR Lac, with the High Energy Transmission Grating on Chandra for a total of 97 ks, spaced over five orbits, at quadratures and conjunctions. Contemporaneous and simultaneous EUV spectra and photometry were also obtained with the Extreme Ultraviolet Explorer. Significant variability in both X-ray and EUV fluxes were observed, dominated by at least one X-ray flare and one EUV flare. We saw no evidence of primary or secondary eclipses. X-ray flux modulation was largest at high temperature, indicative of flare heating of coronal plasma. Line widths interpreted in terms of Doppler broadening suggest that both binary stellar components are active. From line fluxes obtained from total integrated spectra, we have modeled the emission measure and abundance distributions. A strong maximum was found in the differential emission measure, characterized by peaks at log T = 6.9 and 7.4, together with a weak but significant cooler maximum near log T=6.2, and a moderately strong hot tail from log T= 7.6-8.2. Coronal abundances have a broad distribution and show no simple correlation with first ionization potential. While the resulting model spectrum generally agrees very well with the observed spectrum, there are some significant discrepancies, especially among the many Fe L-lines. Both the emission measure and abundance distributions are qualitatively similar to prior determinations from other X-ray and ultraviolet spectra, indicating some long-term stability in the overall coronal structure.Comment: 31 pages, 8 figures, 3 tables; Accepted for publication in the Astrophysical Journal (tentatively October 1, 2003

    The Density of Coronal Plasma in Active Stellar Coronae

    Get PDF
    We have analyzed high-resolution X-ray spectra of a sample of 22 active stars observed with the High Energy Transmission Grating Spectrometer on {\em Chandra} in order to investigate their coronal plasma density. Densities where investigated using the lines of the He-like ions O VII, Mg XI, and Si XIII. While Si XIII lines in all stars of the sample are compatible with the low-density limit, Mg XI lines betray the presence of high plasma densities (>1012> 10^{12} cm3^{-3}) for most of the sources with higher X-ray luminosity (>1030> 10^{30} erg/s); stars with higher LXL_X and LX/LbolL_X/L_{bol} tend to have higher densities at high temperatures. Ratios of O VII lines yield much lower densities of a few 101010^{10} cm3^{-3}, indicating that the ``hot'' and ``cool'' plasma resides in physically different structures. Our findings imply remarkably compact coronal structures, especially for the hotter plasma emitting the Mg XI lines characterized by coronal surface filling factor, fMgXIf_{MgXI}, ranging from 10410^{-4} to 10110^{-1}, while we find fOVIIf_{OVII} values from a few 10310^{-3} up to 1\sim 1 for the cooler plasma emitting the O VII lines. We find that fOVIIf_{OVII} approaches unity at the same stellar surface X-ray flux level as solar active regions, suggesting that these stars become completely covered by active regions. At the same surface flux level, fMgXIf_{MgXI} is seen to increase more sharply with increasing surface flux. These results appear to support earlier suggestions that hot 10710^7 K plasma in active coronae arises from flaring activity, and that this flaring activity increases markedly once the stellar surface becomes covered with active regions.Comment: 53 pages, 19 figures, accepted for publication in Astrophysical Journal. A version of the paper with higher quality figures is available from http://www.astropa.unipa.it/Library/preprint.htm

    High Resolution X-ray Spectroscopy of the Post-T Tauri Star PZ Tel

    Full text link
    We present an analysis of the Chandra High Energy Transmission Grating Spectrometer observation of the rapidly rotating P_(rot)=0.94 d post T Tauri (~20 Myr old) star PZ Telescopii, in the Tucana association. Using two different methods we have derived the coronal emission measure distribution, em(T), and chemical abundances. The em(T) peaks at log T = 6.9 and exhibits a significant emission measure at temperatures log T > 7. The coronal abundances are generally ~0.5 times the solar photospheric values that are presumed fairly representative of the composition of the underlying star. A minimum in abundance is seen at a first ionization potential (FIP) of 7-8 eV, with evidence for higher abundances at both lower and higher FIP, similar to patterns seen in other active stars. From an analysis of the He-like triplet of Mg XI we have estimated electron densities of ~10^(12)-10^(13) cm^(-3). All the coronal properties found for PZ Tel are much more similar to those of AB Dor, which is slightly older than PZ Tel, than to those of the younger T Tauri star TW Hya. These results support earlier conclusions that the soft X-ray emission of TW Hya is likely dominated by accretion activity rather than by a magnetically-heated corona. Our results also suggest that the coronae of pre-main sequence stars rapidly become similar to those of older active main-sequence stars soon after the accretion stage has ended.Comment: 15 pages, 8 Postscript figures, accepted for publication in Astrophysical Journa

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    Deep reinforcement learning for hybrid beamforming in multi-user millimeter wave wireless systems

    No full text
    Publisher Copyright: © 2021 IEEE.This paper proposes a Machine Learning (ML) algorithm for hybrid beamforming in millimeter-wave wireless systems with multiple users. The time-varying nature of the wireless channels is taken into account when training the ML agent, which identifies the most convenient hybrid beamforming matrix with the aid of an algorithm that keeps the amount of signaling information low, avoids sudden changes in the analog beamformers radiation patterns when scheduling different users (flashlight interference), and simplifies the hybrid beamformer update decisions by adjusting the phases of specific analog beamforming vectors. The proposed hybrid beamforming algorithm relies on Deep Reinforcement Learning (DRL), which represents a practical approach to embed the online adaptation feature of the hybrid beamforming matrix into the channel states of continuous nature in which the multiuser MIMO system can be. Achievable data rate curves are used to analyze performance results, which validate the advantages of DRL algorithms with respect to solutions relying on conventional/deterministic optimization tools.Peer reviewe

    Maximum Likelihood Sequence Detection Receivers for Nonlinear Optical Channels

    Get PDF
    The space-time whitened matched filter (ST-WMF) maximum likelihood sequence detection (MLSD) architecture has been recently proposed (Maggio et al., 2014). Its objective is reducing implementation complexity in transmissions over nonlinear dispersive channels. The ST-WMF-MLSD receiver (i) drastically reduces the number of states of the Viterbi decoder (VD) and (ii) offers a smooth trade-off between performance and complexity. In this work the ST-WMF-MLSD receiver is investigated in detail. We show that the space compression of the nonlinear channel is an instrumental property of the ST-WMF-MLSD which results in a major reduction of the implementation complexity in intensity modulation and direct detection (IM/DD) fiber optic systems. Moreover, we assess the performance of ST-WMF-MLSD in IM/DD optical systems with chromatic dispersion (CD) and polarization mode dispersion (PMD). Numerical results for a 10 Gb/s, 700 km, and IM/DD fiber-optic link with 50 ps differential group delay (DGD) show that the number of states of the VD in ST-WMF-MLSD can be reduced ~4 times compared to an oversampled MLSD. Finally, we analyze the impact of the imperfect channel estimation on the performance of the ST-WMF-MLSD. Our results show that the performance degradation caused by channel estimation inaccuracies is low and similar to that achieved by existing MLSD schemes (~0.2 dB)
    corecore