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The space-timewhitenedmatched filter (ST-WMF)maximum likelihood sequence detection (MLSD) architecture has been recently
proposed (Maggio et al., 2014). Its objective is reducing implementation complexity in transmissions over nonlinear dispersive
channels. The ST-WMF-MLSD receiver (i) drastically reduces the number of states of the Viterbi decoder (VD) and (ii) offers a
smooth trade-off between performance and complexity. In this work the ST-WMF-MLSD receiver is investigated in detail.We show
that the space compression of the nonlinear channel is an instrumental property of the ST-WMF-MLSD which results in a major
reduction of the implementation complexity in intensity modulation and direct detection (IM/DD) fiber optic systems. Moreover,
we assess the performance of ST-WMF-MLSD in IM/DD optical systems with chromatic dispersion (CD) and polarization mode
dispersion (PMD). Numerical results for a 10Gb/s, 700 km, and IM/DD fiber-optic link with 50 ps differential group delay (DGD)
show that the number of states of the VD in ST-WMF-MLSD can be reduced ∼4 times compared to an oversampledMLSD. Finally,
we analyze the impact of the imperfect channel estimation on the performance of the ST-WMF-MLSD. Our results show that the
performance degradation caused by channel estimation inaccuracies is low and similar to that achieved by existingMLSD schemes
(∼0.2 dB).

1. Introduction

Maximum likelihood sequence detection (MLSD) receivers
for nonlinear channels have been extensively investigated
in the literature (e.g., [1, 2] and references therein). Their
ability to achieve optimal performance in the presence of
additive white Gaussian noise (AWGN) has always been
of great theoretical and practical interest. The theoretical
interest lies in that it provides a performance bound for any
reception scheme.The practical interest stems from its ability
to actually achieve optimal or nearly optimal performance in
transmissions over nonlinear channels.

Much of the early work in this area has been focused on
the compensation of nonlinearities in satellite communica-
tions [1–5]. A traditional architecture for the optimal nonlin-
ear receiver consists of a matched-filter bank (MFB) followed
by a maximum likelihood sequence detector (MLSD) [1].

Owing to the correlation among the spatial noise components
at the MFB outputs, an MLSD with non-Euclidean metrics
must be used. The use of oversampling in combination with
MLSD (OS-MLSD) has also been proposed to implement the
optimal receiver in the presence of nonlinearities (see [2]
and references therein). Since the complexity of both MFB
and OS MLSD-based receivers grows exponentially with the
channel memory, their practical application in transmissions
over highly dispersive channels has been limited. Despite
this fact, MLSD-based receivers are still preferred over
decision feedback equalizers (DFE) in applications such as
multigigabit intensity modulation/direct detection (IM/DD)
fiber optic systems for the two following reasons.

(i) Performance: DFE suffers from severe performance
limitations in moderate to high dispersion single-
mode fiber links as a result of its inability to com-
pensate nonlinear ISI [6, 7]. Although nonlinear
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DFE (NL-DFE) structures have also been considered
in the literature (e.g., [8, 9]), their performances
still degrade significantly at long fiber lengths (e.g.,
≥500 km).On the other hand,MLSDcan operatewith
a constant penalty around 3 dB with respect to back-
to-back (B2B) at virtually any distance [10, 11].

(ii) High-speed implementation: future generation of com-
munication systems will operate at multigigabit per
second data rates on highly dispersive channels [12].
In commercial applications, the digital receiver is
often implemented as a monolithic chip in CMOS
technology [12]. Maximum clock frequency of state-
of-the-art complex digital signal processors in 28 nm
CMOS technology is limited to frequencies lower
than ∼1 GHz. Therefore, in order to achieve multi-
gigabit per second data rates, parallel processing
techniques are required [12]. Although the complexity
of serial implementations of DFE grows linearly with
channel memory, all presently known parallel pro-
cessing implementations require that the bottleneck
created by the feedback loop be broken using tech-
niques such as the ones proposed by [13–15], whose
complexity grows exponentially with the channelmem-
ory.Therefore, in high-speed applications, complexity
of both DFE and MLSD increases with the channel
memory in a similar way.

From the above it is clear that complexity reduction of
MLSD is crucial for many practical applications. In IM/DD
optical channels, the receiver must compensate the linear
fiber dispersion as well as nonlinearities caused by lasers,
opticalmodulators, the fiber Kerr effect, photo-detectors, and
other components of the link. Chromatic dispersion (CD)
and polarization-mode dispersion (PMD), in combination
with the quadratic response of the photo-detector, are major
factors that limit the reach and drive the complexity of
optical-transmission systems at data rates ≥10Gb/s [16, 17].
With traditional implementations based on oversampling
techniques, an 8192-state MLSD is required to compensate
700 km of fiber at 10Gb/s [10]. This is prohibitive in current
CMOS technology1.

A newMLSD receiver architecture for nonlinear channels
has been proposed in [18]. The major breakthrough of this
proposal consists in a novel representation of the received
signal obtained by a Gram-Schmidt-like orthogonalization
of the kernels of a Volterra series expansion of the channel.
This procedure yields a special form of space-time whitened
matched filter (ST-WMF) [19] whose baud-rate-sampled out-
puts are sufficient statistics with independent noise compo-
nents in both space and time. Combined with the minimum
phase property of the response of each branch, the ST-WMF
provides an effective way to reduce the complexity of MLSD
in nonlinear channels. The ST-WMF MLSD technique offers
a smooth trade-off between performance and complexity. As
complexity is progressively reduced, performance degrades
in a graceful manner. Numerical results in [18] demonstrate
that the number of states of the VD in ST-WMF-MLSD
required on a 10Gb/s, 700 km, and IM/DD fiber-optic link

without PMD can be reduced 8 times compared to an
oversampled MLSD.

Further contributions on the ST-WMF-MLSD receiver
and its performance on IM/DD optical links are provided
in this work. First, the space channel compression achieved
by the ST-WMF-MLSD is analyzed in detail. Space channel
compression is important because it is the property that
enables the major complexity reductions of the proposed
architecture. Second, the performance evaluation of the ST-
WMF-MLSD receiver is extended by addressing the com-
bined effect of CD and PMD. Numerical results confirm
that the ST-WMF-MLSD remains an attractive solution in
the presence of these combined impairments. Finally, the
impact of channel estimation inaccuracies on the ST-WMF-
MLSD performance is assessed. Accuracy and speed of
channel estimation are particularly important when tracking
nonstationary channels. Nonstationarity in optical channels
results from PMD and random rotations of the laser state
of polarization. Our results show that the performance
degradation caused by an imperfect channel estimation is
low and similar to that achieved by existing MLSD schemes
(∼0.2 dB).

This paper is organized as follows.The nonlinear channel
model and the ST-WMF-MLSD architecture are described
in Sections 2 and 3, respectively. Performance evaluation of
the ST-WMF-MLSD under different channel conditions, as
well as its robustness in the presence of imperfect channel
knowledge, are presented and discussed in Sections 4 and 5.
Finally, conclusions are drawn in Section 6.

2. Nonlinear Channel Model

The noisy received signal is given by

𝑟 (𝑡) = 𝑠 (𝑡) + 𝑧 (𝑡) , (1)

where 𝑠(𝑡) is the noise-free signal and 𝑧(𝑡) is the noise
component, which is assumed to be a white Gaussian process
with power spectral density 𝑁

0
. Component 𝑠(𝑡) can be

expressed in terms of its Volterra-series expansion [20, 21].
For example, neglecting the DC term of the expansion we get

𝑠 (𝑡) = ∑

𝑘

𝑎

𝑘
𝑓

0 (
𝑡 − 𝑘𝑇) +

𝑁−1

∑

𝑚=1

∑

𝑘

𝑎

𝑘
𝑎

𝑘−𝑚
𝑓

𝑚 (
𝑡 − 𝑘𝑇) , (2)

where 𝑓
0
(𝑡) is the linear kernel, 𝑓

𝑚
(𝑡) with 𝑚 > 0 is the 𝑚th

second-order kernel, 𝑎
𝑘
is the 𝑘th symbol at the input of the

nonlinear channel, 1/𝑇 is the symbol rate, and𝑁 is the total
number of kernels2.

2.1. Channel Model Orthogonalization. Next we present an
alternative representation of the nonlinear signal 𝑠(𝑡) [18].
Without loss of generality, we consider here the Volterra-
series with a dominant linear kernel 𝑓

0
(𝑡), and we select the

first pivoting response as ℎ
0
(𝑡) = 𝑓

0
(𝑡). Let H

0
be the signal

space spanned by the set {ℎ
0
(𝑡 − 𝑘𝑇)} [19]. We assume that

signal spaces are Hilbert spaces with inner product defined
as ∫∞
−∞

𝑥(𝑡)𝑦

∗
(𝑡) 𝑑𝑡, where superscript ∗ denotes complex
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conjugate. From the projection theorem, the nonlinear kernels
𝑓

𝑚
(𝑡) can be uniquely expressed as

𝑓

𝑚 (
𝑡) = ∑

𝑛

𝜆

(0,𝑚)

𝑛
ℎ

0 (
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(0)
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(𝑡) , (3)

where 𝑔(0)
𝑚
(𝑡) is orthogonal to the signal spaceH

0
; that is,

∫

∞

−∞

𝑔

(0)

𝑚
(𝑡) ℎ

∗

0
(𝑡 − 𝑗𝑇) 𝑑𝑡 = 0, 𝑚 = 1, . . . , 𝑁 − 1, ∀𝑗 ∈ Z,

(4)

while∫∞
−∞

|𝑔

(0)

𝑚
(𝑡)|

2
𝑑𝑡 isminimum [19], andZ denotes the set

of all integers. We highlight that the first summation in (3) is
the projection of𝑓

𝑚
(𝑡) ontoH

0
. DefineG0

𝑚
as the signal space

spanned by {𝑔(0)
𝑚
(𝑡−𝑘𝑇)}. For 𝑥(𝑡) ∈ H

0
and 𝑦(𝑡) ∈ G0
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(4) note that ∫∞
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𝑥(𝑡)𝑦

∗
(𝑡) 𝑑𝑡 = 0; therefore 𝑥(𝑡) and 𝑦(𝑡) are

orthogonal signals [19]. Replacing (3) in (2) and operating,
we obtain

𝑠 (𝑡) = 𝑠

0
(𝑡) + 𝑠
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(𝑡) , (5)

where

𝑠
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with operator⊗ denoting convolution. Notice that 𝑠
0
(𝑡) ∈ H

0

and 𝑠

0
(𝑡) ∈ ∪

𝑁−1
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; therefore signals 𝑠
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0
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orthogonal (see (4)). Next we focus on 𝑠
0
(𝑡). Without loss of

generality we select the second pivoting response as ℎ
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Similarly to (5)–(7), 𝑠
0
(𝑡) can be expressed as
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with 𝜆(1,𝑚)
𝑛

chosen to satisfy
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(12)

Thus, note that 𝑠
1
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H
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, spanned by {ℎ
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Repeating the processing on (11) and generalizing, we get
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where ℎ
𝑛
(𝑡) is the response of the 𝑛th channel path and with
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with
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From (13) and (15) note that signal components fromdifferent
paths are orthogonal; that is,

∫
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Figure 1 shows two multiple input-single output (MISO)
representations of the nonlinear channel. Figure 1(a) shows
the signal represented by the traditional Volterra model of
(2); Figure 1(b) depicts the orthogonal representation given
by (13) and (14).

2.2. Space Channel Compression. The model orthogonaliza-
tion procedure described in Section 2.1 can be performed in
𝑁! different ways with 𝑁 being the number of kernels. For
example, consider a Volterra model with𝑁 = 3. One way to
obtain the orthogonalizedmodel may be realized by selecting
the kernels as shown in Figure 2. In this case, the pulse 𝑓

0
(𝑡)

is selected as the pivoting ℎ
0
(𝑡) for the first orthogonalization

step. Then, 𝑔(0)
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the following set of indexesI = {0, 1, 2}.
A different result is achieved by selecting the pivoting

responses as illustrated in Figure 3. In this situation, 𝑓
1
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step.Then,𝑔(1)
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(0)

2
(𝑡). The index set corresponding to

the procedure depicted in Figure 3 isI = {1, 2, 0}.
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Figure 1: MISO model of the nonlinear channel: (a) based on a Volterra representation; (b) based on the spatially compressed orthogonal
representation.

f0(t) selected as the pivot for 1st step:

1st orthogonalization step:

g(0)1 (t) selected as the pivot for 2nd step:

2nd orthogonalization step:

b(0)
k
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k

= akak−1 + akak−2 ⊗ 𝜆(1,2)
k

b(2)
k

= akak−2

ak akak−1 akak−2

f0(t) f1(t) f2(t)

ak 𝜆(0,1)
k

𝜆(0,2)
k

h0(t) g(0)1 (t) g(0)2 (t)
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(Trivial step):

Figure 2: Orthogonalization procedure following the orderingI =

{0, 1, 2}.

f1(t) selected as the pivot for 1st step:

1st orthogonalization step:

g(0)2 (t) selected as the pivot for 2nd step:

2nd orthogonalization step:

b(0)
k

= akak−1 + ak ⊗ 𝜆(0,1)
k

+ akak−2 ⊗ 𝜆(0,2)
k
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akak−2 𝜆(1,2)
k

h1(t) g(1)2 (t)

ak
h2(t)

(Trivial step):

Figure 3: Orthogonalization procedure following the orderingI =

{1, 2, 0}.

Note that the set of responses {ℎ
𝑖
(𝑡)}

2

𝑖=0
and sequences

{𝑏

(𝑖)

𝑘
}

2

𝑖=0
resulting from the procedures described in Figures

2 and 3 are two different expansions of the same signal
𝑠(𝑡). Any one of the 𝑁! possible sets can be selected in the
orthogonalization process. Space compression of the channel
can be achieved concentrating the maximum of the channel
energy on a reduced set of paths, independent of the distribu-
tion of their individual energy, as explained in the following
discussion.

Let 𝑃 be a given number of paths used tomodel the chan-
nel (e.g., if 𝑃 = 𝑁, note that any orthogonalization process

I shall represent exactly the behavior of the channel). To
reduce the complexity of the receiver, it is desirable for 𝑃 to
be as small as possible. On the other hand, to minimize the
performance degradation (or the inaccuracy of the channel
representation), the orthogonalization process should be
carried out in such a way that the most part of the signal
energy is concentrated on these𝑃 paths. From the above, for a
given value of 𝑃, the optimum setIop for space compression
(i.e., minimal channel distortion modeling) should meet the
following condition:

𝑃−1

∑

𝑖=0

E
(𝑖)

Iop
≥

𝑃−1
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̂I ̸= Iop, (17)
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𝑖
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2
𝑑𝑡 (18)

is the energy in the 𝑖th path for the setI, while 𝐸{⋅} denotes
expectation. If 𝑃 = 𝑁, notice that any orthogonalization
process I will satisfy condition (17). Otherwise, if 𝑃 < 𝑁

the criterion guarantees that the signal energy contained in
the complete 𝑃 paths shall be maximum, independent of the
individual energy distribution among them.

The optimum channel expansion that satisfies (17) can be
found by an exhaustive search. Instead, we propose to achieve
the orthogonalization process to meet the following criteria:

̂E
(0)
≥

̂E
(1)
≥ ⋅ ⋅ ⋅ ≥

̂E
(𝑁−1)

, (19)

with ̂E(𝑗) = ∫

∞

−∞
|ℎ

𝑛
(𝑡)|

2
𝑑𝑡. Condition (19) can be achieved

by selecting at each orthogonalization step (𝑖th step, e.g.,
with 𝑖 ∈ {1, 2, . . . , 𝑁}) the pivoting response (ℎ

𝑖−1
(𝑡)) as the

response with highest energy among the remaining responses
(those orthogonal to ∩𝑖−2

𝑛=0
H
𝑛
for 𝑡 = 𝑘𝑇, ∀𝑘). That is, at the

first step we select the pivoting response ℎ
0
(𝑡) as the Volterra

kernel with the highest energy in {𝑓
𝑛
(𝑡)}

𝑁−1

𝑛=0
. At the second

step we select the pivoting response ℎ
1
(𝑡) as the response

with highest energy in the set of responses orthogonal toH
0

(i.e., 𝑔(0)
𝑚
(𝑡), with 𝑚 = 1, 2, . . . , 𝑁 − 1). This procedure is

repeated in the same way at each step, where the best pivoting
response at each stage is selected by an exhaustive search
among all the pivot candidates at that stage.Theminimization
of the energy of the orthogonal responses (see (3), (4), and
associated discussion) ensures that condition (19) is met. As
we shall show later, condition (19) gives rise to space channel
compression, which can be exploited to reduce complexity.
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Figure 4: Normalized cumulative path energy of the nonlinear
IM/DD fiber-optic link with 𝐿 = 700 km and 1/𝑇 = 10Gb/s.

2.3. Example. As an example, we present results for a 10Gb/s,
700 km, and IM/DD fiber-optic link (details about the simu-
lated system are given in Section 4.1).

Without loss of generality, we assume that 𝑎
𝑘
∈ {±1}.

Let S
𝑛
be the normalized cumulative path energy of the

traditional Volterra-series expansion (see (2)) given by

S
𝑛
=

1

𝐸

𝑠

𝑛

∑

𝑚=0

∫

∞

−∞









𝑓

𝑚
(𝑡)









2
𝑑𝑡, 𝑛 = 1, 2, . . . , 𝑁 − 1, (20)

where 𝐸
𝑠
is the total energy of the signal component 𝑠(𝑡):

𝐸

𝑠
=

𝑁−1

∑

𝑚=0

∫

∞

−∞









𝑓

𝑚
(𝑡)









2
𝑑𝑡. (21)

On the other hand, the normalized cumulative path
energy of the orthogonalized Volterra-series expansion is
defined as

S
𝑛
=

1

𝐸

𝑠

𝑛

∑

𝑚=1

E
(𝑚)

I , 𝑛 = 0, 1, . . . , 𝑁 − 1, (22)

whereE(𝑚)
I

is given by (18) withI obtained according to the
criteria defined by (19). In all cases, note thatS

𝑛
≤ 1 ∀𝑛, with

S
𝑁−1

= 1.
Figure 4 shows the normalized cumulative path energy

S
𝑛
for the traditional (20) and orthogonalized (22) Volterra-

series representation with 𝑁 = 8. For the orthogonal
representation, the pivoting responses are selected according
to the criteria in (19). We observe that most energy of the
nonlinear signal is concentrated on the first two paths for
the orthogonalized Volterra-series expansion (i.e.,E(0)

I
+E
(1)

I

represents ∼99.4% of the total signal energy). The traditional
Volterra model requires five paths to capture a similar level
of nonlinear signal energy. We highlight that the increase of
S
𝑛
from −0.33 dB to −0.12 dB at 𝑛 = 0 is due to the factor

𝐸{|𝑏

(0)

𝑘
|

2
} ≥ 1 in (18). Notice that this factor is ameasure of the

correlation between all nonlinear kernels 𝑓
𝑚
(𝑡) with 𝑚 > 0

and the linear kernel𝑓
0
(𝑡) (e.g., 𝐸{|𝑏(0)

𝑘
|

2
} = 1 (𝑁) if𝑓

0
(𝑡) and

𝑓

𝑚
(𝑡) are orthogonal (same) pulses ∀𝑚). Thus, we conclude

the following for the channel analyzed in the example.

(i) Most energy of the nonlinear kernels with the tradi-
tional Volterra model is contained in their projection
onto the linear signal space spanned by the set {ℎ

0
(𝑡 −

𝑘𝑇)} = {𝑓

0
(𝑡 − 𝑘𝑇)}.

(ii) A channel model with 2 paths captures practically all
the signal energy.

(iii) Since E
(0)

I
is ∼97.5% of the total signal energy (see

Figure 4). Therefore, as we shall show later, a receiver
that considers the first channel path should be able to
achieve a good performance.

3. MLSD Receiver for Nonlinear
Channels with AWGN

TheMLSD receiver chooses the sequence {𝑎
𝑘
} that minimizes

the metric

𝐽 = ∫

∞

−∞

|𝑟(𝑡) − 𝑠(𝑡)|

2
𝑑𝑡. (23)

Using (13) and (16) in (23), we get

𝐽 ∝ −2

𝑁−1

∑

𝑛=0

R{∑

𝑘

𝑏

(𝑛)

𝑘
∫

∞

−∞

𝑟 (𝑡) ℎ

∗

𝑛
(𝑡 − 𝑘𝑇) 𝑑𝑡}

+

𝑁−1

∑

𝑛=0

∫

∞

−∞









𝑠

𝑛
(𝑡)









2
𝑑𝑡

= −2

𝑁−1

∑

𝑛=0

R{∑

𝑘

𝑏

(𝑛)

𝑘
𝑟

(𝑛)

𝑘
} +

𝑁−1

∑

𝑛=0

∫

∞

−∞









𝑠

𝑛 (
𝑡)









2
𝑑𝑡,

(24)

whereR denotes the real part, while

𝑟

(𝑛)

𝑘
= ∫

∞

−∞

𝑟 (𝑡) ℎ

∗

𝑛
(𝑡 − 𝑘𝑇) 𝑑𝑡, 𝑛 = 0, 1, . . . , 𝑁 − 1. (25)

From (24) notice that the computation of the cost function
𝐽 for every candidate symbol sequence {𝑎

𝑘
} can be achieved

from the samples at the outputs of the matched filters given
by (25).

From (1), equation (25) can be rewritten as

𝑟

(𝑛)

𝑘
= 𝑠

(𝑛)

𝑘
+ 𝑧

(𝑛)

𝑘
, 𝑛 = 0, 1, . . . , 𝑁 − 1, (26)

where

𝑠

(𝑛)

𝑘
= ∫

∞

−∞

𝑠 (𝑡) ℎ

∗

𝑛
(𝑡 − 𝑘𝑇) 𝑑𝑡,

𝑧

(𝑛)

𝑘
= ∫

∞

−∞

𝑧 (𝑡) ℎ

∗

𝑛
(𝑡 − 𝑘𝑇) 𝑑𝑡.

(27)

From (15) note that 𝐸{𝑠(𝑛)
𝑙
[𝑠

(𝑚)

𝑙−𝑘
]

∗
} = 0 if𝑚 ̸= 𝑛 while

𝐸{𝑧

(𝑛)

𝑙
[𝑧

(𝑚)

𝑙−𝑘
]

∗

} = {

𝑁

0
𝜌

(𝑛)

𝑘
, if 𝑛 = 𝑚

0, otherwise,
(28)
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where

𝜌

(𝑛)

𝑘
= ∫

∞

−∞

ℎ

𝑛
(𝑡) ℎ

∗

𝑛
(𝑡 − 𝑘𝑇) 𝑑𝑡. (29)

Since the noise is assumed Gaussian, from (28) we conclude
that the noise components at the output of the proposedMFB
are spatially independent. Therefore, the bank of matched
filters {ℎ∗

𝑛
(−𝑡)}

𝑁−1

𝑛=0
followed by a baud rate sampler is called

the space-whitened matched filter (S-WMF) bank.

3.1. Space-Time Whitened Matched Filter MLSD Receiver.
From the above, we observed that the matched filter bank
derived from the new expansion of the nonlinear channel
gives rise to spatially independent noise components. In order
to simplify the implementation of the sequence detector, a
space and time whitening filter bank is derived.

Let 𝜙
𝑛
(𝑡) be the impulse response of the filter with Fourier

transform (FT) given by

Φ

𝑛
(𝜔) =

𝐻

𝑛
(𝜔)

𝛾

(𝑛)
𝑀

𝑛
(𝑒

𝑗𝜔𝑇
)

, 𝑛 = 0, . . . , 𝑁 − 1, (30)

where 𝐻

𝑛
(𝜔) is the FT of ℎ

𝑛
(𝑡) and 𝛾

(𝑛) and 𝑀

𝑛
(𝑧) are

defined by the folded spectrum factorization 𝑆

𝑛
(𝑧) =

(𝛾

(𝑛)
)

2
𝑀

𝑛
(𝑧)𝑀

∗

𝑛
(1/𝑧

∗
) with 𝑆

𝑛
(𝑧) being the 𝑍-transform of

the sequence 𝜌(𝑛)
𝑘

given by (29). The set {𝜙
𝑛
(𝑡 − 𝑘𝑇)} forms

an orthonormal basis for the signal space spanned by {ℎ
𝑛
(𝑡 −

𝑘𝑇)}. Furthermore, we choose𝑀
𝑛
(𝑧) to be minimum phase

[19]. Define 𝑟
𝑛
(𝑡) as the projection of 𝑟(𝑡) onto the signal space

spanned by {ℎ
𝑛
(𝑡 − 𝑘𝑇)}; that is,

𝑟

𝑛 (
𝑡) = ∑

𝑘

𝑟

(𝑛)

𝑘
𝜙

𝑛 (
𝑡 − 𝑘𝑇) , (31)

where 𝑟(𝑛)
𝑘

= ∫

∞

−∞
𝑟(𝑡)𝜙

∗

𝑛
(𝑡 − 𝑘𝑇) 𝑑𝑡. From (15) and following

the procedure used in [19, Section 10.2.4], metric (23) can be
expressed as

𝐽 = ∫

∞

−∞





















r̃(𝑡) − ∑
𝑘

H(𝑡 − 𝑘𝑇)b
𝑘





















2

𝑑𝑡, (32)

whereH(𝑡) is an𝑁 ×𝑁 diagonal matrix given by

H (𝑡) = (

ℎ

0
(𝑡) 0 ⋅ ⋅ ⋅ 0

0 ℎ

1
(𝑡) ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.

.

.

0 0 ⋅ ⋅ ⋅ ℎ

𝑁−1
(𝑡)

) , (33)

while

b
𝑘
= [𝑏

(0)

𝑘
𝑏

(1)

𝑘
⋅ ⋅ ⋅ 𝑏

(𝑁−1)

𝑘
]

𝑇

,
(34)

r̃ (𝑡) = [𝑟0 (𝑡) 𝑟

1
(𝑡) ⋅ ⋅ ⋅ 𝑟

𝑁−1
(𝑡)]

𝑇

,
(35)

with 𝑏(𝑛)
𝑘

and 𝑟
𝑛
(𝑡) given by (14) and (31), respectively.

On the other hand, from (30) it is possible to show that

∑

𝑘

H (𝑡 − 𝑘𝑇) b𝑘 = ∑
𝑘

Φ (𝑡 − 𝑘𝑇) [M𝑘 ⊗ b
𝑘
] , (36)

whereΦ(𝑡) andM
𝑘
are𝑁 ×𝑁 diagonal matrices given by

Φ (𝑡) = (

𝜙

0
(𝑡) 0 ⋅ ⋅ ⋅ 0

0 𝜙

1
(𝑡) ⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.

.

.

0 0 ⋅ ⋅ ⋅ 𝜙

𝑁−1
(𝑡)

) , (37)

M
𝑘
=(

𝛾

(0)
𝑚

(0)

𝑘
0 ⋅ ⋅ ⋅ 0

0 𝛾

(1)
𝑚

(1)

𝑘
⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.

.

.

0 0 ⋅ ⋅ ⋅ 𝛾

(𝑁−1)
𝑚

(𝑁−1)

𝑘

), (38)

with𝑚(𝑛)
𝑘

being the inverse FT of𝑀
𝑛
(𝑒

𝑗𝜔𝑇
). From (31) notice

that (35) can be expressed as

r̃ (𝑡) = ∑
𝑘

Φ (𝑡 − 𝑘𝑇) r̃
𝑘
, (39)

where r̃
𝑘
= [𝑟

(0)

𝑘
⋅ ⋅ ⋅ 𝑟

(𝑁−1)

𝑘
]

𝑇 (see (31)). From (32), (36), and
(39) it can be shown that MLSD reduces to minimize

𝐽 =









r̃
𝑘
−M
𝑘
⊗ b
𝑘









2
. (40)

Let z̃
𝑘
be the 𝑁-dimensional vector with the noise

components of the baud rate samples r̃
𝑘
. From (15) and

(30), the power spectral density of z̃
𝑘
results in S

�̃�
= 𝑁

0
I,

where I is the identity matrix.Therefore, the minimization of
(40) can be easily implemented by using a Viterbi detector
with multidimensional Euclidean branch metrics. Figure 5
shows a block diagram of the ST-WMF-MLSD receiver with
dimension 𝑃 (i.e., 𝑃 is the number of filters in the bank). If
𝑃 = 𝑁, all the paths of the nonlinear channel are used by the
receiver.

3.2. Complexity Considerations. The ST-WMF-MLSD con-
sists of a filter bank followed by a Viterbi decoder (VD)
and a channel estimation stage. Although the computational
load of the latter may be important, its complexity is not
critical since it can be implemented at a low frequency rate3.
On the other hand, the dimension of the front-end (𝑃) is
expected to be very low in general as a result of the spatial
energy compression achieved by the ST-WMF-MLSD. Then,
𝑃 ≤ 2 is a reasonably good estimation for applications in
IM/DD optical systems and the computational complexity
of the filter bank is reduced to the one of 2 linear filters.
Therefore, the implementation complexity of ST-WMF-MLSD
is dominated by the VD. Practical aspects related to high-
speed implementations of VD have been widely investigated
in the past literature (e.g., see [12, 22] for more details).
The computational load (usually measured in number of
multiplications and comparisons) and storage requirements
of the VD depend directly on the number of states.Therefore,
we adopt the number of states of the VD as the measure
of complexity in order to compare the MLSD architectures
investigated in this work.
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Figure 5: Block diagram of the 𝑃-dimensional ST-WMF-MLSD receiver.
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Figure 6: IM/DD fiber-optic system with ST-WMF-MLSD receiver.

4. Performance Evaluation in
IM/DD Optical Systems

Next we analyze the proposed ST-WMF-MLSD receiver in
transmissions over IM/DD fiber-optic systems with on-off
keying (OOK) modulation. We focus on two key aspects
of ST-WMF-MLSD: its performance (in comparison with
current solutions based on OS-MLSD), and its ability to
reduce complexity (e.g., number of states of VD). Complex-
ity reduction is possible owing to (i) the minimum-phase
property of the equivalent channel response provided by ST-
WMF and (ii) condition (19). The latter gives rise to space
compression, which reduces the ST-WMF dimension, 𝑃. This
is achieved by using the most significant 𝑃 paths of the
nonlinear channel.

Figure 6 depicts the optical system under consideration.
The transmitter modulates the intensity of the transmitted
signal using NRZ-OOK modulation. The standard single
mode fiber (SMF) introduces CD and PMD, as well as
attenuation. Optical amplifiers are deployed periodically
along the fiber to compensate the attenuation, also intro-
ducing amplified spontaneous emission (ASE) noise in the
signal. ASE noise is modeled as AWGN in the optical
domain. The received optical signal is filtered by an optical
filter and then converted to a current with a PIN diode
or avalanche photodetector. The resulting photocurrent is
filtered by an electrical filter. The noise component after
the electrical filtering is non-Gaussian and signal-dependent
[16]. Therefore, the electrical signal is first processed by a
memoryless nonlinear transformation. It has been found that
after a square root transformation, the noise can be assumed
Gaussian and signal-independent [23, 24]. Furthermore,
channel nonlinearities can also be reduced by using the
square root transformation [25], which improves the space
compression used to reduce the receiver dimension (i.e., most

of the channel energy is concentrated on the linear kernel).
The split-step Fourier method [26] is used to compute the
propagation of optical signals through the fiber. Oversampled
linear and nonlinear kernels are extracted from the electrical
signal after the square root transformation.The oversampling
factor 𝑅 = 𝑇/𝑇

𝑠
depends on various parameters of the

communication system (e.g., optical power, fiber length, etc.).
In our case, we have found that an oversampling factor of
𝑅 = 16 is good enough to accurately model the system;
that is, no improvement was appreciated by increasing the
sampling rate for the entire set of conditions considered for
this work. Then, we compute ℎ

𝑛
(𝑘𝑇

𝑠
) and 𝜆

(𝑛,𝑚)

𝑘
according

to (17), and the symbol rate channel response matrix M
𝑘

can be easily obtained from (38). Since the noise after the
square root transformation is approximately Gaussian and
signal-independent [27], the theory proposed in [28] is used
to evaluate the bit error probability4. All the kernels of the
nonlinear channel are used to compute the error probability,
independent of the receiver dimension, 𝑃. Data rate is 1/𝑇 =

10Gb/s and the transmitted pulse shape has an unchirped
Gaussian envelope 𝑒

−𝑡
2
/2𝑇
2

0 with 𝑇

0
= 36 ps. We use a

Lorentzian optical filter and a fourth-pole Butterworth elec-
trical filter with bandwidths of 15 and 10GHz, respectively.
The fiber dispersion is𝐷 = 17 ps/(nm-km).

4.1. IM/DD Systems with CD and PMD. Typically, the perfor-
mance of equalization stages in fiber optic transmissions is
evaluated by using the optical signal-to-noise ratio (OSNR)
required to achieve a given BER (e.g., see [10, 11]). The target
BER is around 10−3, which corresponds to the value required
at the input of the forward error correction (FEC) code to
achieve the error rate expected by the application (e.g., ∼
10−15) [29].
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Figure 7: OSNR penalty with respect to B2B at BER = 10

−3 versus
number of states of the VD for 𝐿 = 700 km and DGD = 0 ps.

Figure 7 depicts the OSNR penalty with respect to a B2B
system at a bit-error rate (BER) of 10−3 versus the number of
states of the VD for 𝐿 = 700 km. We present results for ST-
WMF-MLSD with 𝑃 = 1 (i.e., only one filter in the bank).
For OS-MLSD with 2 samples/bit, the reduction of states
is achieved by truncation and optimization of the sampling
phase in order to minimize BER (8 uniformly distributed
phases in the interval 𝑇/2 were tested). From Figure 7, we
verify that the number of states of the VD at a penalty of
4.6 dB can be reduced from 2048 to 256with ST-WMF-MLSD
and 𝑃 = 1. Notice that this performance is achieved by
using a VD with one sample per bit [11]. Furthermore, we
emphasize that these benefits greatly outperform the extra
complexity required by the linear filter and the channel
estimator (implementation details are omitted here due to
space limitations). From Figure 7 we can also see that the
performance degradation achievedwith𝑃 = 1with respect to
the idealMLSD is only∼0.3 dB.This result can be understood
from the analysis of Section 2.2, where it has been observed
that 97.5% of the total signal energy is contained in the first
channel path.

The performance of ST-WMF-MLSD in the presence of
CD and first-order PMD (i.e., differential group delay or
DGD) is investigated. Figure 8 depicts the OSNR penalty
versus the number of states of the VD for a 700 km fiber link
with two values of DGD: 25 and 50 ps. We evaluate the OS-
MLSD with 2 samples/bit and ST-WMF-MLSD with 𝑃 = 2.
As expected, both receivers tend to the same performance
as the number of states of the VD increases. We also note
that the benefits of the ST-WMF-MLSD reduce when the
DGD increases5. Nevertheless, from Figure 8 notice that the
number of states of the VD at a penalty of 6 dB can be
reduced 8 and 4 times with ST-WMF-MLSD at 25 and 50 ps
DGD, respectively. These results show that the ST-WMF-
MLSD is still an attractive solution to reduce complexity in
transmissions over fiber-optic channels in the presence of
PMD.

5. Impact of the Imperfect Channel Knowledge

Performance evaluation of the ST-WMF-MLSD has been
achieved by assuming a perfect knowledge of the channel. In
the following, we analyze the impact of the channel estima-
tion inaccuracy on the performance of the ST-WMF-MLSD
architecture in transmissions over IM/DD optical systems.
This study will show that the performance degradation in ST-
WMF-MLSD receivers, with 𝑃 = 1, caused by an imperfect
channel estimation, is low (∼0.2 dB) and similar to that
achieved by oversampled OS-MLSD receivers in the 𝐿 =

700 km fiber link used in the example of Figure 7.
The estimation of the oversampled linear and nonlinear

kernels is required to implement bothMLSD-based receivers.
Let 𝑅 = 𝑇/𝑇

𝑠
be the oversampling factor. Based on the

polyphase filter representation of the oversampled chan-
nel response (see Figure 9), the received samples can be
expressed as

𝑟

(𝑖)

𝑛
= ∑

𝑘

𝑎

𝑘
𝑓

(𝑖)

0
[𝑛 − 𝑘] +∑

𝑘

𝑁−1

∑

𝑚=1

𝑎

𝑘
𝑎

𝑘−𝑚
𝑓

(𝑖)

𝑚
[𝑛 − 𝑘] + 𝑧

(𝑖)

𝑛
, (41)

where 𝑟(𝑖)
𝑛

= 𝑟(𝑛𝑇 + 𝑖𝑇

𝑠
), 𝑧(𝑖)
𝑛

= 𝑧(𝑛𝑇 + 𝑖𝑇

𝑠
), and 𝑓(𝑖)

𝑚
[𝑛] =

𝑓

𝑚
(𝑛𝑇 + 𝑖𝑇

𝑠
) with 𝑖 = 0, . . . , 𝑅 − 1. Notice that there are 𝑅

different sequences sampled at the baud rate, corresponding
to 𝑅 different sampling phases.

Equation (41) can be rewritten as

𝑟

(𝑖)

𝑛
= ∑

𝑘

𝑎

𝑛−𝑘
𝑓

(𝑖)

0
[𝑘] +∑

𝑘

𝑁−1

∑

𝑚=1

𝑎

𝑛−𝑘
𝑎

𝑛−𝑘−𝑚
𝑓

(𝑖)

𝑚
[𝑘] + 𝑧

(𝑖)

𝑛
. (42)

Since symbols 𝑎
𝑘
are assumed zero-mean and i.i.d. real

random variables with 𝜎2
𝑎
= 𝐸{|𝑎

𝑘
|

2
}, we can verify that

𝑓

(𝑖)

0
[𝑘] =

1

𝜎

2

𝑎

𝐸 {𝑟

(𝑖)

𝑛
𝑎

𝑛−𝑘
} ,

𝑓

(𝑖)

𝑚
[𝑘] =

1

𝜎

4

𝑎

𝐸 {𝑟

(𝑖)

𝑛
𝑎

𝑛−𝑘
𝑎

𝑛−𝑘−𝑚
} ,

𝑖 = 0, . . . , 𝑅 − 1.

(43)

From (43), a simple estimator of the oversampled linear
and nonlinear kernels can be implemented with an averaging
filter as follows:

̂

𝑓

(𝑖)

0
[𝑘] =

1

𝜎

2

𝑎
𝐿

𝐴

𝑛
0
+𝐿
𝐴
−1

∑

𝑛=𝑛
0

𝑟

(𝑖)

𝑛
𝑎

𝑛−𝑘
,

̂

𝑓

(𝑖)

𝑚
[𝑘] =

1

𝜎

4

𝑎
𝐿

𝐴

𝑛
0
+𝐿
𝐴
−1

∑

𝑛=𝑛
0

𝑟

(𝑖)

𝑛
𝑎

𝑛−𝑘
𝑎

𝑛−𝑘−𝑚
,

(44)

where 𝐿
𝐴
is the length of the averaging filter, 𝑛

0
is an arbitrary

time index, and 𝑎

𝑘
is the detected symbol6. The accuracy

of the channel estimation given by (44) depends on the
precision of the decisions 𝑎

𝑘
, the length of the averaging filter

𝐿

𝐴
, and the channel noise power. We consider that decisions

provided by the forward error correction (FEC) decoder
are available; therefore the effect of decision errors can be
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Figure 8: OSNR penalty respect to B2B at BER = 10

−3 versus number of states of the VD for 𝐿 = 700 km. DGD = 25 ps (a) and 50 ps (b).
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Figure 9: Example of the polyphase filter representation of an oversampled linear channel with 𝑅 = 𝑇/𝑇
𝑠
.

neglected (i.e., 𝑎
𝑘
= 𝑎

𝑘
). We highlight that this assumption

is still valid if pre-FEC decisions are used as a result of the
low bit error rates experienced in this link (e.g., ∼10−3). From
the above, we conclude that the goodness of the estimates (44)
shall mainly depend on the filter length 𝐿

𝐴
and the channel

noise power.
The precision of (44) improves as the value of 𝐿

𝐴

increases. On the other hand, the maximum value of 𝐿
𝐴

shall be imposed by the speed of temporal variations of the
fiber optic channel. As a result of its dependence on stress
and vibrations, as well as on random changes in the state of
polarization of the laser, PMD is nonstationary. Fluctuations
with a time scale of a hundreds of microseconds have been
considered in previous works (e.g., [30]). Therefore, the

response time of channel estimation algorithms for PMD
mitigationmust be less than 1ms (in practice a response time
less than 100 𝜇s is required [27]). This imposes, for example,
that the bandwidth of the averaging filter (∼1/(4𝐿

𝐴
𝑇)) should

be ≥20 kHz in order to efficiently track the channel variation.
The received signal seen by an MLSD receiver in the

presence of imperfect knowledge of the channel dispersion
can be expressed as

𝑟

(𝑖)

𝑛
= ∑

𝑘

𝑎

𝑛−𝑘
(𝑓

(𝑖)

0
[𝑘] +

𝑁−1

∑

𝑚=1

𝑎

𝑛−𝑘−𝑚
𝑓

(𝑖)

𝑚
[𝑘])

+ 𝑧

(𝑖)

𝑛
+ �̂�

(𝑖)

𝑛

= 𝑠

(𝑖)

𝑛
+ 𝑧

(𝑖)

𝑛
+ �̂�

(𝑖)

𝑛
,

(45)
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Figure 10: SNR penalty caused by imperfect channel estimation versus length of the averaging filter (a) and the bandwidth of the averaging
filter (b).

where 𝑠(𝑖)
𝑛
= 𝑠(𝑛𝑇 + 𝑖𝑇

𝑠
) and �̂�(𝑖)

𝑛
= 𝑠(𝑛𝑇 + 𝑖𝑇

𝑠
) − 𝑠(𝑛𝑇 + 𝑖𝑇

𝑠
)

is the estimation error component, while 𝑠(𝑛𝑇 + 𝑖𝑇

𝑠
) is the

synthesized signal obtained from (44).
Figure 10(a) shows the SNR penalty caused by the imper-

fect channel estimation as a function of 𝐿
𝐴
obtained from

computer simulations. We consider 1/𝑇 = 10GHz, 𝑅 = 16,
and the fiber link with 𝐿 = 700 km, as used in Figure 7. The
SNR penalty caused by an imperfect channel estimation is
computed as

ΔSNR =

𝜎

2

𝑧
+ 𝜎

2

�̂�

𝜎

2

𝑧

, (46)

where 𝜎2
𝑧
is the channel noise power required to achieve a

BER = 10

−3 with an unconstrained complexity OS-MLSD
receiver (i.e., the VD uses as many states as required) and 𝜎2

�̂�

is the variance of the estimation error component7. Notice
that the penalty is ∼0.4 dB for 𝐿

𝐴
= 10

5. This value of 𝐿
𝐴

represents a BW of ∼1/(4𝐿
𝐴
𝑇) = 25 kHz (see Figure 10(b)).

Assuming that the estimation error is white Gaussian noise
with power 𝜎2

�̂�
, from Figure 10(a) we infer that the SNR

penalty caused by an imperfect channel knowledge in OS-
MLSD receivers with 𝐿

𝐴
= 10

5 should be ≲ΔSNR ∼ 0.4 dB.
Figure 11 depicts the OSNR penalty at BER = 10

−3 versus
the number of states of the Viterbi detector (VD) with 𝐿 =

700 km. We present results with perfect knowledge of the
fiber dispersion (denoted as 𝐿

𝐴
= ∞), and for imperfect

channel estimation with 𝐿
𝐴
= 10

5. We see that the mean
penalty caused by inaccuracies of channel estimation agrees
with that expected from Figure 10 with 𝐿

𝐴
= 10

5 (i.e.,
∼0.14 dB < ΔSNR ∼ 0.4 dB). Furthermore, we observe
that the impact of imperfect channel knowledge on the
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Figure 11: OSNR penalty at BER = 10

−3 versus number of states of
the VD with 𝐿 = 700 km.

performance is similar in bothMLSD receivers (i.e., ∼0.14 dB
and ∼0.18 dB for OS and ST-WMF, resp.). This result can be
understood from the fact that the filters ℎ∗

0
(−𝑡) and 𝑚(0)

𝑘
are

computed from the samples of the estimated linear kernel
̂

𝑓

0
(𝑡). Taking into account that the energy of the linear

component is significantly higher than the nonlinear kernels
[25] (see Section 2.2), an accurate estimation of ℎ

0
(𝑡) can be

achieved for the channel considered. Then, we infer that the
energy loss of the signal component at the output of �̂�

0
(𝑡)

will be small. Therefore, and based on (45), notice that the



Journal of Electrical and Computer Engineering 11

performance of OS-MLSD and ST-WMF-MLSD with 𝑃 = 1

should degrade in a similar way.

6. Conclusions

New results on the recently proposed ST-WMF-MLSD non-
linear receiver have been presented in this paper.These results
are the following: (1) the space compression property of the
factorization introduced in [18] has been analyzed in detail;
(2) the performance of the ST-WMF-MLSD in IM/DD fiber
optic systems in the combined presence of CD and PMD
has been evaluated, and (3) it has been shown that the
performance degradation caused by an imperfect channel
estimation and tracking is low and similar to that achieved by
existing MLSD schemes. These features make the ST-WMF-
MLSD a good architecture for receivers for long distance
IM/DD fiber-optic links.
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Endnotes

1. Some commercial implementations of VD at 10Gb/s
with 4, 8, and 16 states are available in 90 nm CMOS
technology [31–33]. It should be possible to implement
VD’s with 64 or 128 states by using the available 28 nm
technology.

2. The Volterra model can be easily extended to include
higher order terms (e.g., third order kernels 𝑓

𝑚
(𝑡),

with input sequence 𝑎

𝑘
𝑎

𝑘−𝑚
𝑎

𝑘−𝑛
and 𝑛 > 0, could

be included in the expansion). To keep the notation
simple, only second order kernels are used in the
derivations throughout this paper. However, numerical
results incorporate nonlinear kernels of order higher
than two.

3. As a result of its dependence on stress and vibrations, as
well as on random changes in the state of polarization
of the laser, PMD is nonstationary. Fluctuations with a
time scale of a few milliseconds have been observed in
PMDmeasurements [27].Thus, the response time of the
channel estimation schemes for PMD mitigation must
be less than 1ms. In practice, a response time less than
100 𝜇s is required. Therefore, the channel estimation
stage could be easily implemented by using current
technology.

4. We did not runMonte Carlo simulations of the commu-
nication systems.Thenumerical results are semianalytic,
in the sense that they are theoretic estimations assisted
by numerical simulations. The probability of error is

estimated according to the theory proposed in [28]; that
is, the first terms of the union bound (those with the
lowest distance) are used to estimate the probability of
error. Numerical simulations are used to find the dis-
tances of the error-events, their Hamming weights, and
a priori probabilities. These results are then introduced
in the formulas for the probability of error estimation as
reported in [28].

5. In order to explain this result, consider a fiber channel
with DGD = 100 ps only (i.e., no CD). Since DGD ∼ 𝑇,
the IM/DD system approximately behaves as a duobi-
nary channel; therefore the time compression achieved
by the ST-WMF-MLSD will be negligible.

6. In order to improve the channel tracking capability,
an efficient implementation of the channel estimator
with the well-known LMS algorithm may be preferred
[12]. Nevertheless, the objective is to shed light on the
impact of imperfect knowledge of the fiber dispersion on
the orthogonalized Volterra model. Therefore, practical
aspects of the receiver architecture (e.g., buffers, number
of taps of theWF, finite precision arithmetic effects, etc.)
are not considered.

7. The mean penalty of 20 runs with different seeds of the
random number generator is presented.
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