2,341 research outputs found
Conformance Checking Based on Multi-Perspective Declarative Process Models
Process mining is a family of techniques that aim at analyzing business
process execution data recorded in event logs. Conformance checking is a branch
of this discipline embracing approaches for verifying whether the behavior of a
process, as recorded in a log, is in line with some expected behaviors provided
in the form of a process model. The majority of these approaches require the
input process model to be procedural (e.g., a Petri net). However, in turbulent
environments, characterized by high variability, the process behavior is less
stable and predictable. In these environments, procedural process models are
less suitable to describe a business process. Declarative specifications,
working in an open world assumption, allow the modeler to express several
possible execution paths as a compact set of constraints. Any process execution
that does not contradict these constraints is allowed. One of the open
challenges in the context of conformance checking with declarative models is
the capability of supporting multi-perspective specifications. In this paper,
we close this gap by providing a framework for conformance checking based on
MP-Declare, a multi-perspective version of the declarative process modeling
language Declare. The approach has been implemented in the process mining tool
ProM and has been experimented in three real life case studies
From zero to hero: A process mining tutorial
Process mining is an emerging area that synergically combines model-based and data-oriented analysis techniques to obtain useful insights on how business processes are executed within an organization. This tutorial aims at providing an introduction to the key analysis techniques in process mining that allow decision makers to discover process models from data, compare expected and actual behaviors, and enrich models with key information about the actual process executions. In addition, the tutorial will present concrete tools and will provide practical skills for applying process mining in a variety of application domains, including the one of software development
Clustering-Based Predictive Process Monitoring
Business process enactment is generally supported by information systems that
record data about process executions, which can be extracted as event logs.
Predictive process monitoring is concerned with exploiting such event logs to
predict how running (uncompleted) cases will unfold up to their completion. In
this paper, we propose a predictive process monitoring framework for estimating
the probability that a given predicate will be fulfilled upon completion of a
running case. The predicate can be, for example, a temporal logic constraint or
a time constraint, or any predicate that can be evaluated over a completed
trace. The framework takes into account both the sequence of events observed in
the current trace, as well as data attributes associated to these events. The
prediction problem is approached in two phases. First, prefixes of previous
traces are clustered according to control flow information. Secondly, a
classifier is built for each cluster using event data to discriminate between
fulfillments and violations. At runtime, a prediction is made on a running case
by mapping it to a cluster and applying the corresponding classifier. The
framework has been implemented in the ProM toolset and validated on a log
pertaining to the treatment of cancer patients in a large hospital
A tool for compiling Declarative Process Mining problems in ASP
We present a tool for compiling three problems from the Process Mining community into Answer Set Programming: Log Generation, Conformance Checking, and Query Checking. For each problem, two versions are addressed, one considering only the control-flow perspective and the other considering also the data perspective. The tool can support companies in analyzing their business processes; it is highly flexible and general, and can be easily modified to address other problems from Declarative Process Mining
Incremental Predictive Process Monitoring: How to Deal with the Variability of Real Environments
A characteristic of existing predictive process monitoring techniques is to
first construct a predictive model based on past process executions, and then
use it to predict the future of new ongoing cases, without the possibility of
updating it with new cases when they complete their execution. This can make
predictive process monitoring too rigid to deal with the variability of
processes working in real environments that continuously evolve and/or exhibit
new variant behaviors over time. As a solution to this problem, we propose the
use of algorithms that allow the incremental construction of the predictive
model. These incremental learning algorithms update the model whenever new
cases become available so that the predictive model evolves over time to fit
the current circumstances. The algorithms have been implemented using different
case encoding strategies and evaluated on a number of real and synthetic
datasets. The results provide a first evidence of the potential of incremental
learning strategies for predicting process monitoring in real environments, and
of the impact of different case encoding strategies in this setting
Data-Aware Declarative Process Mining with SAT
Process Mining is a family of techniques for analyzing business process execution data recorded in event logs. Process models can be obtained as output of automated process discovery techniques or can be used as input of techniques for conformance checking or model enhancement. In Declarative Process Mining, process models are represented as sets of temporal constraints (instead of procedural descriptions where all control-flow details are explicitly modeled). An open research direction in Declarative Process Mining is whether multi-perspective specifications can be supported, i.e., specifications that not only describe the process behavior from the control-flow point of view, but also from other perspectives like data or time. In this paper, we address this question by considering SAT (Propositional Satisfiability Problem) as a solving technology for a number of classical problems in Declarative Process Mining, namely log generation, conformance checking and temporal query checking. To do so, we first express each problem as a suitable FO (First-Order) theory whose bounded models represent solutions to the problem, and then find a bounded model of such theory by compilation into SAT
Resolving inconsistencies and redundancies in declarative process models
Declarative process models define the behaviour of business processes as a set of constraints. Declarative process discovery aims at inferring such constraints from event logs. Existing discovery techniques verify the satisfaction of candidate constraints over the log, but completely neglect their interactions. As a result, the inferred constraints can be mutually contradicting and their interplay may lead to an inconsistent process model that does not accept any trace. In such a case, the output turns out to be unusable for enactment, simulation or verification purposes. In addition, the discovered model contains, in general, redundancies that are due to complex interactions of several constraints and that cannot be cured using existing pruning approaches. We address these problems by proposing a technique that automatically resolves conflicts within the discovered models and is more powerful than existing pruning techniques to eliminate redundancies. First, we formally define the problems of constraint redundancy and conflict resolution. Second, we introduce techniques based on the notion of automata-product monoid, which guarantees the consistency of the discovered models and, at the same time, keeps the most interesting constraints in the pruned set. The level of interestingness is dictated by user-specified prioritisation criteria. We evaluate the devised techniques on a set of real-world event logs
Silhouetting the Cost-Time Front: Multi-objective Resource Optimization in Business Processes.
AbstractThe allocation of resources in a business process determines the trade-off between cycle time and resource cost. A higher resource utilization leads to lower cost and higher cycle time, while a lower resource utilization leads to higher cost and lower waiting time. In this setting, this paper presents a multi-objective optimization approach to compute a set of Pareto-optimal resource allocations for a given process concerning cost and cycle time. The approach heuristically searches through the space of possible resource allocations using a simulation model to evaluate each allocation. Given the high number of possible allocations, it is imperative to prune the search space. Accordingly, the approach incorporates a method that selectively perturbs a resource utilization to derive new candidates that are likely to Pareto-dominate the already explored ones. The perturbation method relies on two indicators: resource utilization and resource impact, the latter being the contribution of a resource to the cost or cycle time of the process. Additionally, the approach incorporates a ranking method to accelerate convergence by guiding the search towards the resource allocations closer to the current Pareto front. The perturbation and ranking methods are embedded into two search meta-heuristics, namely hill-climbing and tabu-search. Experiments show that the proposed approach explores fewer resource allocations to compute Pareto fronts comparable to those produced by a well-known genetic algorithm for multi-objective optimization, namely NSGA-II
- …