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Resolving Inconsistencies and Redundancies in

Declarative Process Models

Claudio Di Ciccioa,∗, Fabrizio Maria Maggib, Marco Montalic,
Jan Mendlinga

aVienna University of Economics and Business, Austria
bUniversity of Tartu, Estonia

cFree University of Bozen-Bolzano, Italy

Abstract

Declarative process models define the behaviour of business processes as a
set of constraints. Declarative process discovery aims at inferring such con-
straints from event logs. Existing discovery techniques verify the satisfaction
of candidate constraints over the log, but completely neglect their interac-
tions. As a result, the inferred constraints can be mutually contradicting
and their interplay may lead to an inconsistent process model that does not
accept any trace. In such a case, the output turns out to be unusable for
enactment, simulation or verification purposes. In addition, the discovered
model contains, in general, redundancies that are due to complex interac-
tions of several constraints and that cannot be cured using existing pruning
approaches. We address these problems by proposing a technique that auto-
matically resolves conflicts within the discovered models and is more powerful
than existing pruning techniques to eliminate redundancies. First, we for-
mally define the problems of constraint redundancy and conflict resolution.
Second, we introduce techniques based on the notion of automata-product
monoid, which guarantees the consistency of the discovered models and, at
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the same time, keeps the most interesting constraints in the pruned set. The
level of interestingness is dictated by user-specified prioritisation criteria. We
evaluate the devised techniques on a set of real-world event logs.

Keywords: Process Mining, Declarative Process, Conflict Resolution,
Redundant Constraints

1. Introduction

The automated discovery of processes is the branch of the process min-
ing discipline that aims at constructing a process model on the basis of the
information reported in event data. The underlying assumption is that the
recorded events indicate the sequential execution of the to-be-discovered pro-
cess activities. The compact and correct representation of the behaviour ob-
served in event data is one of the major concerns of process mining. Process
discovery algorithms are classified according to the type of process model
that they return, i.e., either procedural or declarative. Procedural process
discovery techniques return models that explicitly describe all the possible
executions allowed by the process from the beginning to the end. The output
of declarative process discovery algorithms consists of a set of constraints,
which exert conditions on the enactment of the process activities. The pos-
sible executions are implicitly established as all those ones that respect the
given constraints. Mutual strengths and weaknesses of declarative and pro-
cedural models are discussed in [1, 2].

One of the advantages of procedural models such as Petri nets is the rich
set of formal analysis techniques available. These techniques can, for in-
stance, identify redundancy in terms of implicit places or inconsistencies like
deadlocks [3]. In turn, similar facilities are not provided for novel declarative
modelling languages like Declare. This is a problem for several reasons.
First, we are currently not able to check the consistency of a generated con-
straint set. Many algorithms that generate Declare models include in the
output those constraints that are individually satisfied in the log in more
than a given number of cases. The interaction of returned constraints is
thereby neglected, with the consequence that subsets of constraints can end
up contradicting one another. Second, it is currently unclear whether a given
constraint set is free of redundancies. Since there are constraint types that
imply one another, it is possible that the generated constraint sets are par-
tially redundant. The lack of formal techniques for handling these two issues
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is unsatisfactory from both a research and a practical angle. This is also a
roadblock for conducting fair comparisons in user experiments when a Petri
net without deadlocks and implicit places is compared with a constraint set
of unknown consistency and redundancy-freedom.

In this paper, we address the need for formal analysis of Declare mod-
els. We define the notion of an automata-product monoid as a formal notion
for analysing consistency and local minimality, which is grounded in au-
tomata multiplication. Based on this structure, we devise efficient analysis
techniques. Our formal concepts have been implemented as part of a process
mining tool that we use for our evaluation. By analysing event log bench-
marks, we are able to show that inconsistencies and redundancies occur in
process models automatically discovered by state-of-the-art tools. First, our
technique can take such process models as input and return constraints sets
that are consistent. To this end, contradictory subsets are identified and
resolved by removing the constraints generating the conflict. Second, our
technique eliminates those constraints that do not restrict the behaviour of
the process any further, i.e., that do not convey any meaningful informa-
tion to the output. As a consequence, the returned sets are substantially
smaller than the ones provided by prior algorithms, though keeping the ex-
pressed behaviour equivalent to the inconsistency-free process. This paper
extends the research presented in our former publication [4] with a complete
and self-consistent definition of the adopted formal concepts and algorithms.
We also provide alternative strategies to be utilised during the redundancy
and consistency check, so as to allow for different criteria to prioritise the
constraints during the pruning phase. This is of crucial importance, since
manipulating a declarative process model towards removal of inconsistencies
and redundancies is intrinsically expensive from a computational point of
view. Furthermore, we introduce a complementary technique to further re-
duce the number of redundancies in the models after the first check. Finally,
we broadly extend the evaluation with an analysis of our implemented ap-
proach over real-world data sets including the event logs provided for the
former editions of the BPI challenge.

The paper is structured as follows. Section 2 illustrates intuitively the
problems that we tackle with the proposed research work. Section 3 describes
the preliminary notions needed to formally contextualise the challenged is-
sues. Section 4 formally specifies the problems of inconsistencies and redun-
dancies in detail. Section 5 defines our formal notion of automata-product
monoid, which offers the basis to formalise the techniques for consistency
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and redundancy checking. Section 6 illustrates the results of our evaluations
based on real-world benchmarking data. Section 7 discusses our contribu-
tions in the light of related work. Finally, Section 8 concludes the paper.

2. Motivation

Declarative process models consist of sets of constraints exerted on tasks,
which define the rules to be respected during the process execution. A well-
established language for modelling declarative processes is Declare [5, 6].
Declare defines a set of default templates, which are behavioural rules
that refer to parameters in order to abstract from tasks. In Declare, e.g.,
Init(x) is a template imposing that a given parametric task x must be the
one with which every process instance starts. End(x) specifies that every
process instance must terminate with the given task x. Response(x, y) states
that if task x is carried out, then task y must be eventually executed after-
wards. Precedence(x, y) imposes that y can only be performed if x has been
previously executed.

Let us consider a simple example process having three tasks, a, b, and
c. By indicating the execution sequence of tasks with their name, possible
enactments that fulfil a process model consisting of Init(a) and End(c) are:
(i) abababc, and (ii) ababac. If we consider an event log made of the aforemen-
tioned execution sequences and use any declarative discovery algorithm to
reveal a declarative process model that could have generated them, it would
correctly return a set of constraints including Init(a) and End(c) because
they are always satisfied. However, the set of constraints would include also
(1) Precedence(a, b) and (2) Precedence(a, c), as well as (3) Response(a, c) and
(4) Response(b, c): Those four constraints hold true in the event log as well.
Nevertheless, if a is already bound to be the first task to be carried out in
every process instance (Init(a)), clearly no other task can be executed if a is
not done before. Therefore, the first two constraints can be trivially deduced
by Init(a). They add no information, yet they contribute to uselessly enlarge
the set of constraints returned to the user as the outcome of the discovery.
By the same line of reasoning, the third and fourth constraints are superflu-
ous with respect to End(b). Intuitively, this example outlines the problem
of redundancy, which is one of the two challenges that we tackle with this
research work: The objective is to remove from the set of constraints in the
discovered process model those ones that do not add information, i.e., that
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are not restricting the process behaviour any further given the remaining
ones.

In the context of declarative process discovery, event logs can be affected
by recording errors or report exceptional deviations from the usual enact-
ments [7]. In such cases, constraints that were originally part of the process
may be violated in some of the recorded executions. If discovery algorithms
take into account only those constraints that always hold true in the event
log, a minimum amount of noise might already cause several constraints to be
discarded from the returned set [8, 9, 10]. To circumvent this issue, declar-
ative discovery algorithms offer the possibility to tune a so-called support
threshold : It specifies the minimum fraction of cases in which a constraint
is fulfilled within the event log to let such constraint be included in the dis-
covered model. However, this comes at the price of possibly having conflicts
in the model though: Constraints that hold true in a fraction of the event
log above the set threshold can contradict other constraints. In such a case,
the model becomes unsatisfiable, i.e., it exerts conditions that cannot be met
by any possible execution. Such a model would clearly be to no avail to the
discovery intents. This issue outlines the problem of inconsistencies in the
discovered model, which we challenge in this research paper.

The aim of the presented approach is therefore twofold: Given a discov-
ered declarative process model, we want to (1) remove its inconsistencies, and
(2) remove its redundancies. To pursue these objectives, we aim at keeping
the process behaviour as similar as possible to the original one when remov-
ing inconsistencies, and retaining the minimum number of constraints that
still represent the same original behaviour while getting rid of the redun-
dancies. The number of combinations of constraints to test for the optimum
of both problems is not tractable in practice, because every subset of the
original constraints set should be confronted with the others. Our solution
instead requires a polynomial number of checks over constraints to provide
a sub-optimal yet effective solution. Furthermore, different criteria can be
adopted to express (1) the desired behavioural closeness and (2) the prefer-
ability of constraints to be retained. To this extent, our solution envisages
(1) the relaxation of conditions exerted by the contradicting constraints and
(2) different ranking criteria for constraints, respectively.
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3. Declarative process modelling and mining

This section defines the formal background for our research problem. In
particular, we introduce and revisit the concepts of event logs and of declar-
ative process modelling and mining.

Notational conventions. We adopt the following notations. Given a set X,
(i) the multi-set of X is denoted as M (X); (ii) the power-set of X is denoted
as P (X); (iii) a sequence of elements xi ∈ X is denoted by the juxtaposition
of its elements x1x2 · · ·xn; (iv) the cardinality of X is denoted as |X|; the
same notation applies both to the length of sequences and the cardinality of
multi-sets.

Identifiers in cursive sans-serif format will be written in sans-serif letters
when assigned to actual parameters. Generic identifiers of tasks, e.g., will be
indicated as a, b, and c, whereas concrete assignments of task identifiers will
be written as a, b, and c.

3.1. Event Logs

An event is a system-recorded information reporting on the execution of
a task during the execution of a process. Events are labelled with so-called
event classes, i.e., task names [11]. We assume that each event uniquely
corresponds to the execution of a single task. This assumption builds upon
the work on event class reconciliation of Baier et al. [12, 13]. We thus abstract
every event with its event class, in turn related to a task. A finite sequence
of events is named trace. A complete trace represents the execution of a
process instance from the beginning to the end. An event log is a collection
of traces. If multiple process instances have been executed by conducting the
same sequence of tasks, multiple traces in the event log consist of the same
sequence of events, accordingly.

Formally, an event log L is a multi-set of traces ti with i ∈ [1, |L|], which
in turn are finite sequences of events ei,j with i ∈ [1, |L|] and j ∈ [1, |ti|] [14,
15, 16]. The log alphabet A is the set of symbols identifying all possible
tasks and event classes. We write a, b, c to refer to them. Without loss of
generality, we also refer to events as occurrences of symbols inA. By denoting
the set of sequences of tasks as A∗ we have that L ∈ M (A∗). An example
of log is: L = {t1, t2} where t1 = abcacbacd and t2 = ababc. Event logs are the
fundamental input of automated process discovery algorithms [14, 17].
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Type Notation Template and description Regular expression
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Cardinality templates

x
1..* Participation(x)

[^x]*(x[^x]*)+[^x]*
x occurs at least once

x
0..1 AtMostOne(x)

[^x]*(x)?[^x]*
x occurs at most once

Position templates

x
INIT Init(x)

x.*
x is the first to occur

x
END End(x)

.*x
x is the last to occur

R
e
la

t
io

n
t
e
m

p
la

t
e
s

Forward-unidirectional relation templates

x y RespondedExistence(x, y)
[^x]*((x.*y.*)|(y.*x.*))*[^x]*

If x occurs, then y occurs too

x y Response(x, y)
[^x]*(x.*y)*[^x]*

If x occurs, then y occurs after x

x y AlternateResponse(x, y)
[^x]*(x[^x]*y[^x]*)*[^x]*

If x occurs, y occurs afterwards before x recurs

x y ChainResponse(x, y)
[^x]*(xy[^x]*)*[^x]*

If x occurs, y occurs immediately after it

Backward-unidirectional relation templates

x y Precedence(x, y)
[^y]*(x.*y)*[^y]*

y occurs only if preceded by x

x y AlternatePrecedence(x, y)
[^y]*(x[^y]*y[^y]*)*[^y]*

y occurs only if preceded by x with no other y in between

x y ChainPrecedence(x, y)
[^y]*(xy[^y]*)*[^y]*

y occurs only if x occurs immediately before it

Coupling templates

x y CoExistence(x, y)
[^xy]*((x.*y.*)|(y.*x.*))*[^xy]*

x occurs iff. y occurs

x y Succession(x, y)
[^xy]*(x.*y)*[^xy]*

x occurs iff. it is followed by y

x y AlternateSuccession(x, y)
[^xy]*(x[^xy]*y[^xy]*)*[^xy]*

x and y occur iff. they follow one another, alternating

x y ChainSuccession(x, y)
[^xy]*(xy[^xy]*)*[^xy]*

x and y occur iff. y immediately follows x

Negative templates

x y NotChainSuccession(x, y)
[^x]*(aa*[^xy][^x]*)*([^x]*|x)

x and y occur iff. y does not immediately follow x

x y NotSuccession(x, y)
[^x]*(x[^y]*)*[^xy]*

x can never occur before y

x y NotCoExistence(x, y)
[^xy]*((x[^y]*)|(y[^x]*))?

x and y never co-occur

Table 1: Declare templates.

7



3.2. Declarative Process Modelling Languages
A declarative process modelling language represents the behaviour of pro-

cesses by means of constraints, i.e., rules that must not be violated during
the execution of process instances. Such rules are meant to be exerted over
tasks in the context of temporal structures like imperative process models or
logs. To date, Declare is one of the most well-established declarative pro-
cess modelling languages. It provides a standard library of templates (reper-
toire), i.e., behavioural constraints parametrised over activities. Table 1 lists
the constraints that will be considered in this paper. Typical examples of
Declare constraints are Participation(a) and Response(b, c). The former
specifies that a must be executed in every process instance. The latter de-
clares that if b is executed, then c must eventually follow. The constrained
task of Participation(a) is a, whereas the constrained tasks of Response(b, c)
are b and c. The template of Participation(a) is Participation, whilst the
template of Response(b, c) is Response. Participation is an example of ex-
istence template, because it asserts conditions on the execution of a single
activity. Response is an example of a relation template as it specifies condi-
tions over pairs of activities. For relation templates, activations and targets
are defined: The former is a task whose execution imposes obligations on
the enactment of another task, i.e., the target. E.g., b is the activation and
c is the target of Response(b, c), because the execution of b requires c to be
executed eventually.

Formally, a template is a predicate C/n ∈ C, where C is the Declare
repertoire and n denotes its arity, i.e., the number of parameters [18]. In
this article, we consider constraints of arity not higher than 2, because they
constitute the subset of constraints discovered by the majority of declarative
process miners [19, 20, 21]. Nevertheless, the presented approach can be
seamlessly extended to the case of constraints of higher arity. Existence tem-
plates are unary, whereas relation templates are binary. Formal parameters
of constraints are denoted by x and y for binary constraints or as x1, . . . , xn
for constraints of a generic arity n. We will interchangeably use, e.g., C/2 or
C(x, y) to denote a template of arity 2. Templates will be denoted as C when
their arity is unspecified or clear from the context.

A constraint is the application of a template over tasks by means of the
assignment of its formal parameters to elements in A. Formally, given a tem-
plate C/n ∈ C, a parameter assignment γn is a function [1, n] → A, where
[1, n] is the set of integers ranging from 1 to n. γn(i) is meant to assign
the i-th parameter of C/n to a task in A, in compliance with the positional
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notation of the parameters of predicates. The C/n-constraint resulting from
γn, written Cγ/n, is also represented as C = C(γn(1) , . . . , γn(n)). For exam-
ple, Response(b, c) denotes the constraint resulting from the application of
γ2 : {1, 2} → A to the Response/2 template, where γ2(1) = b and γ2(2) = c.

In light of the above, and taking inspiration from the tabular representa-
tion of behavioural relations in [22, 23], we can define a declarative process
model as follows.

Definition 3.1 (Declarative process model). A declarative process
model is a tuple M = 〈A,C,Γ〉 where:

• A is a finite non-empty set of tasks;

• C is a finite non-empty repertoire of templates;

• Γ = {Cγ/ni : C/n ∈ C, γni : [1, . . . , n]→ A, i > 0} is a finite set of
constraints.

Γ is a subset of the constraints universe CA, which corresponds to the set of
all constraints C that derive from the instantiation of every template C/n ∈ C
with every possible assignment to tasks in A. Please notice that by definition
two different assignments γn and γ′n can be applied to the same constraint
C/n. It is the case, e.g, when Response(a, b) and Response(b, c) both belong to
the declarative process model: γ2(1) = a and γ2(2) = b, γ′2(1) = b and γ′2(2) =
c, hence Responseγ/2 = Response(a, b) and Responseγ′/2 = Response(b, c).

Declare is a declarative process modelling language providing the reper-
toire of templates listed in Table 1. Having, e.g., A = {a, b, c}, in Declare
CA would contain Init(a), Init(b), Init(c), Response(a, b), Response(b, a),
Response(b, c), Response(c, b), Response(a, c), Response(c, a), etc.

We respectively indicate activation and target of a template C as C|•
and C|⇒. Hence, Response(x, y)|• = x, and Response(x, y)|⇒ = y. With
a slight abuse of notation, we use the same notation also for constraints:
Response(a, b)|• = a, Response(a, b)|⇒ = b. Moreover, we assume that for a
template C(x) of arity 1, activation and target coincide: C(x)|• = C(x)|⇒ = x.

As said, events are meant to be recordings of the tasks carried out during
the process enactment. Therefore, we will interchangeably interpret De-
clare rules as (i) behavioural relations between tasks in a process model
or (ii) conditions exerted on the occurrence of events in traces. We will
henceforth consider that, e.g., Participation(a) imposes that every trace con-
tains at least an occurrence of a. Likewise, Response(b, c) indicates that after

9



the occurrence of b, c occurs afterwards in the trace. Both t1 and t2 in the
example log L are compliant with Participation(a) and Response(b, c). Such
conceptual matching is typical of Declare mining approaches [9, 24], as
event logs are used to analyze to what extent constraints are respected by
counting the number of fulfilments within traces.

3.2.1. Evaluation and Satisfiability of a Declarative Process Model

Since constraints are predicates, they can be evaluated and checked for
satisfiability. In particular, as exposed by Räim et al. [25], every constraint
of a declarative process model can be evaluated over traces by adopting a
semantics based on linear temporal structures. We thus introduce the notion
of evaluation of a constraint over a trace as a function η : CA×A∗ → {>,⊥},
such that:

η (C, t ) =

{
> if C ∈ CA evaluates to true over t ∈ A∗

⊥ otherwise.
(1)

If the conditions imposed by the constraint are satisfied by every event in
the trace, then the trace fulfils the constraint, i.e., the constraint evaluates
to true (>) over the trace.

With a slight abuse of notation, we denote the evaluation of a declarative
process model M = 〈A,C,Γ〉 over a trace by means of the same symbol η,
and define it as follows:

η (M, t ) =

{
> if for all C ∈ Γ ⊆ CA, C evaluates to true over t ∈ A∗

⊥ otherwise.

(2)
The notion of evaluation of a declarative process model leads to the sat-

isfiability problem, i.e., checking whether there exists a trace over which the
model evaluates to true. Hereinafter, we denote the set of traces that satisfy
a declarative process model M as its language:

L (M) = {t ∈ P (A∗) : η (M, t ) = >} . (3)

Since a declarative process model is evaluated to > on a trace t
only if all its constraints are evaluated to > on t (Equation (2)), given
two models M = 〈A,C,Γ〉 and M′ = 〈A,C,Γ′〉 where Γ′ ⊆ Γ, it follows
that L (M) ⊆ L (M′). The declarative process model MI = 〈A,C, ∅〉
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trivially accepts any trace consisting of elements of A, because it im-
poses no constraints. Hence, L (MI) = P (A∗) is the most underfitting
declarative process model, but not interesting from a business process
perspective, since it accepts any possible behaviour. Likewise, empty
process models, i.e., not satisfiable by any trace, are equivalently in-
effective. As an example, we can consider the Declare constraints
CoExistence(a, b) and NotCoExistence(a, b). The first one states that in
a trace a and b always co-occur. The second one establishes that if
a occurs in a trace, then b cannot occur, and vice-versa. It follows
that a model M∅ = 〈{a, b} ,C, {CoExistence(a, b),NotCoExistence(a, b)}〉 is
unsatisfiable, because the two constraints are contradicting, which im-
plies L (M∅) = ∅. Notice that also the declarative process model
M′
∅ = 〈{a, b} ,C, {CoExistence(a, b),NotCoExistence(a, b), Init(a)}〉 is still

unsatisfiable, although Init(a) is not in contradiction with CoExistence(a, b)
nor with NotCoExistence(a, b). This observation leads to the problem that
we want to address: Finding and removing contradicting constraints that
make declarative process models unsatisfiable.

3.2.2. Discovery of a Declarative Process Model

A declarative process model can be discovered by evaluating all con-
straints in the constraints universe over the event log and returning all and
only those constraints that evaluate to > over the event log. However, this
would make the discovered model overfitting, with the consequence that if
the event log contained errors, then the discovered model would be affected
by erroneously discarded or added constraints [26]. To overcome this issue,
metrics have been introduced that make the discovered model less prone to
faulty log entries.

Taking inspiration from the area of data mining [27], we adopt the
support metric [19, 21]. Support assesses the degree of fulfilment of con-
straints in the event log by scaling the number of traces fulfilling the con-
straint by the number of traces in the log. Support is defined as a function
σ : CA ×M (A∗)→ [0, 1] ⊆ R>0, being R>0 the set of positive real numbers,
computed as follows:

σ(C,L) =
|{t ∈ L : η (C, t ) = >}|

|L|
. (4)

Given the example event log from above, L = {t1, t2} where
t1 = abcacbacd and t2 = ababc, we have that: σ(Participation(a), L) = 1.0,
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σ(Response(b, c), L) = 1.0, and σ(Response(a, b), L) = 0.5, because no b fol-
lows the last a occurring in t1.

Typically, a discovered declarative process model consists of those con-
straints having a support higher than a user-specified threshold: Those
that are fulfilled in a significant number of cases belong to the discov-
ered model. However, the amount of constraints that the discovered model
consists of is usually overwhelming, when only relying on such criterion.
Therefore, metrics for assessing the relevance of constraints have been es-
tablished, i.e., confidence κ and interest factor ι, which scale the support
by the ratio of traces in which the activation occurs, resp. both the con-
strained tasks occur. Confidence and interest factor are defined as functions
κ : CA ×M (A∗)→ [0, 1] ⊆ R>0, and ι : CA ×M (A∗)→ [0, 1] ⊆ R>0, respec-
tively, which are computed as follows:

κ(C,L) = σ(C,L)× |{t ∈ L : C|• ∈ t }|
|L|

, (5)

ι(C,L) = σ(C,L)× |{t ∈ L : C|• ∈ t and C|⇒ ∈ t }|
|L|

. (6)

Different variants of calculating these metrics have been proposed [19, 28,
29]. Notice that both κ and ι scale the value of σ by a number included in the
range [0, 1]. By their definition, it always holds true that given a constraint
C and an event log L, 0 6 ι(C,L) 6 κ(C,L) 6 σ(C,L) 6 1.

3.3. Declare Template Types and Subsumption

Declare is a declarative process modelling language that provides a
repertoire of templates for the specification of constraints over tasks. The
list of templates considered in this paper is provided in Table 1. Here, we de-
scribe how the templates are divided into types and constitute a subsumption
hierarchy [30, 28, 26], as illustrated in Figure 1.

Examples of constraints in Declare are: (i) Participation(a), specifying
that task a must occur in every trace; (ii) AtMostOne(a), declaring that a
must occur not more than once in a trace; (iii) RespondedExistence(a, b),
imposing that if a occurs in a trace, then also b must occur in the same trace.
Participation and AtMostOne are existence templates. Because they exert
restrictions on the number of occurrences of a task in a trace, they belong to
the type of cardinality constraint templates. Init(a) and End(a) are existence
constraints stating that a must be the first, resp. the last, event occurring in
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Cardinality templates

Position templates

Participation(x) AtMostOne(x)

Init(x) End(x)

(a) Existence templates

Backward-unidirectional
relation templates

Coupling templates
Forward-unidirectional

relation templates
Negative templates

RespondedExistence(x, y)RespondedExistence(y, x) CoExistence(x, y) NotCoExistence(x, y)

Response(x, y)

AlternateResponse(x, y)

ChainResponse(x, y)

Precedence(x, y)

AlternatePrecedence(x, y)

ChainPrecedence(x, y)

Succession(x, y)

AlternateSuccession(x, y)
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backward forward

negates

(b) Relation templates

Figure 1: The subsumption map of Declare templates. Templates are indicated by
solid boxes. The subsumption relation is depicted as a line starting from the subsumed
template and ending in the subsuming one, with an empty triangular arrow recalling the
UML IS-A graphical notation. The coupling constraint templates are linked to the related
forward-unidirectional relation constraint and backward-unidirectional relation constraint
templates by means of grey arcs. The negative constraint templates are graphically linked
to the corresponding coupling constraint templates by means of wavy grey arcs.

all traces. Therefore, they belong to the type of position constraints. Both
their templates are subsumed by Participation, because they imply that the
constrained task occurs in every trace in order to be the first or the last
one. Figure 1(a) illustrates the subsumption hierarchy of existence constraint
templates. Templates are indicated in solid boxes. The subsumption between
templates is drawn with a line starting from the subsumed template and
ending in the subsuming one, with an empty triangular arrow recalling the
UML IS-A graphical notation.

As Figure 1(b) illustrates, RespondedExistence(x, y) generates an off-
spring of related relation templates. Its directly subsumed templates (“chil-
dren”) are Response(x, y) and Precedence(y, x). Response(a, b) imposes that
eventually after an occurrence of a (the activation), b (the target) must occur.
Dually, Precedence(a, b) requires that before an occurrence of the activation
task b, target task a occurs. Both constraints strengthen the conditions
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exerted by RespondedExistence by specifying that not only must the tar-
get occur, but also in which relative position in the trace (after or before
the activation). However, the role of activation and target are swapped in
Precedence, w.r.t. RespondedExistence. Owing to this, RespondedExistence
and Response belong to the type of forward-unidirectional relation templates,
whereas Precedence is a backward-unidirectional relation template.

Technically, given two n-ary templates C, C ′ ∈ C, we say that C is sub-
sumed by C ′, written C v C ′, if for every trace t ∈ A∗ and every param-
eter assignment γn from the parameters of C to tasks in A, whenever t
complies with the instantiation of C with γn, then t also complies with
the instantiation of C ′ with γn. For binary templates, we write C v C ′−
if the subsumption holds by inverting the parameters of C ′ w.r.t. those in
C, i.e., by considering templates C(x, y) and C ′(y, x). We thus have that
Response v RespondedExistence. By the same line of reasoning, we have that
Precedence v RespondedExistence−. v is transitive (if C v C ′ and C ′ v C ′′
then C v C ′′) and reflexive (C v C). We also introduce the inverse relation
of v, i.e., w, which we use to indicate that C subsumes C ′, i.e., C w C ′: E.g.,
RespondedExistence w Response, and RespondedExistence w Precedence−.
In the following, we extend the usage of v and its inverse relation to con-
straints too: C v C ′ means that constraint C is subsumed by constraint C ′,
e.g., Response(a, b) v RespondedExistence(a, b).

In the subsumption hierarchy of both Response and Precedence, the di-
rect child templates are AlternateResponse and AlternatePrecedence. The
concept of alternation strengthens the parent template by adding the con-
dition that between pairs of activation and target, not any other activa-
tion occurs. The subsumption hierarchy concludes with ChainResponse and
ChainPrecedence: They impose that occurrences of activation and target are
immediately adjacent.

The conjunction of a forward-unidirectional relation template and a
backward-unidirectional relation template belonging to the same level of
the subsumption hierarchy generates the so-called coupling templates:
Succession(x, y), e.g., holds when both Response(x, y) and Precedence(x, y)
hold true. In addition, the coupling template CoExistence is equal to the
conjunction of RespondedExistence and RespondedExistence−. For every cou-
pling template C, a function fw (C) and bw(C) are defined that resp. return
the related forward-unidirectional relation and the backward-unidirectional
relation templates. Hence, fw (Succession(x, y)) = Response(x, y) and
bw(Succession(x, y)) = Precedence(x, y). In Figure 1(b), the functions fw
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and bw are indicated by grey arcs labelled as forward and backward, respec-
tively. With a slight abuse of notation, we will adopt function symbols fw
and bw not only for templates but also for constraints.

Finally, coupling templates CoExistence, Succession and
ChainSuccession correspond to other templates that share the same activa-
tions and exert opposite conditions on the targets: Resp., NotCoExistence,
NotSuccession and NotChainSuccession. For instance, CoExistence(a, b)
states that a and b always co-occur in a trace. NotCoExistence(a, b) states
instead that if either a (resp. b) occurs in the trace, then b (resp. a) cannot.
Owing to this, NotCoExistence, NotSuccession and NotChainSuccession are
named negative templates. Given a negative template, e.g., NotCoExistence,
we say that it negates the corresponding coupling template, e.g.,
CoExistence. Due to the opposite conditions exerted on the targets, the
subsumption hierarchy gets also reverted w.r.t. the corresponding negated
templates: NotCoExistence v NotSuccession v NotChainSuccession. In
Figure 1(b), negative templates are graphically linked to their corresponding
coupling templates by means of wavy grey arcs labelled as negates.

Based on the concept of subsumption, we can define the notion of re-
laxation R. R is a unary operator that returns the direct parent in the
subsumption hierarchy of a given template. If there exists no parent for the
given template, then R returns a predicate that would hold true for any
possible trace, i.e., >. Formally, given a template C ∈ C, we have:

R (C) =


C ′ if (i) C ′ ∈ C \ {C}, (ii) C v C ′, and

(iii) @C ′′ ∈ C \ {C, C ′} s.t. C v C ′′ and C ′′ v C ′

> otherwise

(7)

We extend the relaxation operator and the subsump-
tion relation to the domain of constraints, such that, e.g.,
R (Response(a, b)) = RespondedExistence(a, b).

3.4. Semantics of Declare as regular expressions

A plethora of semantics for Declare templates have been proposed in
the literature by relying on different logic-based approaches, including Lin-
ear Temporal Logic (LTL) [31, 32], Linear Temporal Logic on Finite Traces
(LTLf ) [33, 34], First Order Logic (FOL) formulae over finite ordered traces
[28, 34] and abductive logic programming [35]. We adopt regular expressions
(REs) because they allow us to take advantage of well-established techniques
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for calculating automata products, which are at the base of our approach.
Table 1 lists the translation of templates into REs.

Regular expressions are a formal notation to compactly express finite se-
quences of characters, a.k.a. matching strings. The syntax of REs consists
of any juxtaposition of characters of a given alphabet, optionally grouped by
enclosing parentheses ( and ), to which the following operators can be ap-
plied: Binary alternation | and concatenation, and the unary Kleene star *.
Thus, the regular expression a(bc)*d|e identifies any string starting with
a, followed by any number of repetitions of the pattern (sub-string) bc (op-
tionally, none) and closed by either d or e, such as ad, abcd, abcbce and
ae. Table 1 adopts the POSIX standard for the following additional shortcut
notations: (i) . and [^x] respectively denote any character or any charac-
ter but x, (ii) + and ? operators respectively match from one to any and
from none to one occurrences of the preceding pattern. We also make use
of (iii) the parametric quantifier {,m }, with m integer higher than 0, which
specifies the maximum number of repetitions of the preceding pattern, and
(iv) the parametric quantifier {n,}, with n integer higher than or equal to 0,
which specifies the minimum number of repetitions of the preceding pattern.
We recall here that (i) REs are closed under the conjunction operation & [36],
and (ii) the expressive power of REs completely covers regular languages [37],
thus (iii) since regular grammars are recognisable through REs [38, 37], for
every RE, a corresponding deterministic finite state automaton (FSA) exists,
accepting all and only the matching strings [39]. The conjunction operator
& satisfies commutativity and associativity. Its identity element is .*.

3.5. Finite State Automata

A (deterministic) FSA is a finite-state labelled transition system
A = 〈Σ, S, s0, δ, Sf〉, where: Σ is an alphabet; S is the finite non-empty
set of states; s0 ∈ S is the initial state; δ : S × Σ → S is the transition
function, i.e., a function that, given a starting state and a character of the
alphabet, returns the target state (if defined); Sf ⊆ S is the set of final
(accepting) states [38]. For the sake of simplicity, we will omit the quali-
fication “deterministic”. A finite path π of length n over A is a sequence
π = 〈π1, . . . , πn〉 of tuples πi = 〈si−1, σi, si〉 ∈ δ, for which the following con-
ditions hold true: (i) π1, the first tuple, is such that s0 = s0 (i.e., π starts
from the initial state of A) and (ii) the starting state of πi is the target
state of πi−1: π = 〈〈s0, σ1, s1〉 , 〈s1, σ2, s2〉 , . . . 〈sn−1, σn, sn〉〉. A finite string
of length n > 0, i.e., a concatenation σ = σ1 . . . σn of characters σi ∈ Σ, is
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σ∈Σ

(a) Identity element (b) Absorbing element

Figure 2: Finite state automata acting as identity element and absorbing element for the
automata cross-product operation.

accepted by A if a path π of length n is defined over A and is such that (i) for
every i ∈ [1, n], πi = 〈si−1, σi, s

i〉, and (ii) πn = 〈si−1, σn, s
n〉 is s.t. sn ∈ Sf.

We overload the L notation by denoting as L (A) ⊆ P (Σ∗) the (possibly
infinite) set of strings accepted by A.

FSAs are closed under the product operator × [40]. A product of two
FSAs A and A′ accepts the intersection of languages (sets of accepted strings)
of each operand: L (A× A′) = L (A)

⋂
L (A′). The product of FSAs is an

isomorphism for the conjunction of REs, i.e., the product of two FSAs re-
spectively corresponding to two REs is equivalent to the FSA that derives
from the conjunction of the two REs [41]: Given the REs r, r′, and nam-
ing as A the operation leading from an RE to the corresponding FSA, we
have that A (r& r′) = A (r)×A (r′). The product operator × is commu-
tative and associative. The identity element for × over the alphabet Σ is
AI = 〈Σ, {s0}, s0, {s0} × Σ× {s0}, {s0}〉 (Figure 2(a)). It accepts all strings
over Σ: L

(
AI
)

= P (Σ∗). The absorbing element is A∅ = 〈Σ, {s0}, s0, ∅, ∅〉
(Figure 2(b)). It does not accept any string: L

(
A∅
)

= ∅.

4. Formalisation of the Problem

In this section, we present the twofold problem tackled in this work. First,
we want to avoid that the discovered declarative process models contain
inconsistencies, i.e., contradictions among constraints that make the overall
model unsatisfiable. Second, we want to minimise the number of constraints
in the discovered declarative process models, in particular by eliminating
those that are redudant.

4.1. The Consistency Problem

In Section 3.2, we have introduced the general notions of declarative pro-
cess model and of its language, defined in terms of the set of traces that
satisfy all constraints present in the model. We have also discussed that not

17



all declarative process models are meaningful. One extreme case is the one
in which the declarative process M = 〈A,C,Γ〉 of interest is unsatisfiable,
i.e., L (M) = ∅. In this case, M cannot be used for simulation nor execu-
tion, since there exists no trace that satisfies it. In addition, the usage of
M to evaluate the compliance of a log confuses the process analyst, since
every trace is trivially considered non-compliant. Furthermore,M acts as an
absorbing element when composing it with another declarative model M′,
in the sense that the model resulting from the composition continues to be
unsatisfiable, irrespectively of the constraints contained in M′.

An unsatisfiable model M = 〈A,C,Γ〉 contains at least one constraint
C ∈ Γ that is in conflict with the other constraints C1, . . . , C|Γ|−1 ∈ Γ \ {C},
i.e., for which no trace exists that satisfies them all. Formally, there is no
t ∈ A∗ such that η (C, t ) = > for every C ∈ Γ \ {C} and η

(
C, t

)
= >.

Addressing the consistency problem means ensuring that a declarative pro-
cess model is satisfiable, i.e., accepts at least one execution trace. When
the process model is unsatisfiable, this requires to identify and remove those
constraints that are in conflict.

This problem is extremely challenging. In fact, there could be multiple
sets of conflicting constraints, each formed by two or more constraint. Their
identification is thus inherently intractable, as it requires in the worst case to
consider all possible subsets of Γ [42]. Furthermore, once such conflicting sets
are singled out, there are in general exponentially many ways of removing
constraints belonging to such sets so as to fix the inconsistency. This issue is
particularly difficult to manage in the context of declarative process discovery,
since each newly discovered constraint could suddenly introduce a conflict
with the partial declarative process model discovered so far.

On the other hand, the consistency problem is pervasive in declarative
process discovery. To illustrate this, we utilise the event log set of the BPI
challenge 2012 [43]. The event log pertains to an application process for
personal loans or overdrafts of a Dutch bank. It contains 262,200 events dis-
tributed across 24 different possible event classes and 13,087 traces. Process
mining tools such as MINERful [28] and Declare Maps Miner [19] generate
declarative process models in Declare from event logs. In essence, these
models define a set of declarative constraints that collectively determine the
allowed and the forbidden traces.

The main idea of declarative process discovery is that the overfitting of
the discovered models can be avoided by defining thresholds for parameters
such as support, confidence and interest factor. By choosing a support
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threshold smaller than 100%, we can easily obtain constraint sets that are
supported by different parts of the log and that contradicts each other. E.g.,
when using MINERful on the BPI challenge 2012 event log with a support
threshold of 75%, it returns the constraints Participation(A Preaccepted),
NotChainSuccession(A Preaccepted,W Completeren aanvrag), and
ChainResponse(A Preaccepted,W Completeren aanvrag), which have an empty set
of traces that fulfil all of them. In fact, the first constraint imposes that
A Preaccepted must be executed at least once, the second constraint imposes
that A Preaccepted is never directly followed by W Completeren aanvrag, whereas
the third one requires that if A Preaccepted is executed, W Completeren aanvrag

must immediately follow. Clearly, such inconsistent constraint sets should
not be returned by the discovery algorithm.

4.2. The Minimality Problem

The second problem we tackle in this work is minimality. This problem
is concerned with the informative content of the discovered declarative pro-
cess model. The goal is to understand whether all its constraints effectively
contribute to the separation between compliant and non-compliant traces,
or are instead redundant. Let M = 〈A,C,Γ〉 and let C ∈ Γ be a constraint
of M. Intuitively, we say that C is redundant in M if the set of compliant
traces (i.e., the language defined by M) is not affected by the presence of
C. Formally, let M′ = 〈A,C,Γ \ {C}〉 be the declarative process model ob-
tained fromM by removing constraint C. We then have that C is redundant
in M if L (M) = L (M′).

In this light, addressing the minimality problem means transforming the
discovered declarative process model into one that is language-wise equiva-
lent, but does not contain redundant constraints. Models that contain re-
dundancies are pointlessly difficult to understand for the process analysts,
since redundant constraints do not provide any additional information about
the permitted and forbidden behaviours.

Like for consistency, this problem is inherently difficult and calls for the
application of suitable strategies that find a reasonable trade-off between
optimality and computational efficiency. In fact there are, in general, ex-
ponentially many ways of making a model redundancy-free. This is, again,
particularly critical in the context of declarative process discovery. Every
newly discovered constraint could in fact introduce redundancy, which could
be removed either by ignoring the newly discovered constraint or by dropping
a set of already discovered constraints redundant with the new one.
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To show to which extent this problem is present in concrete declarative
process modelling languages such as Declare, we recall the fact that De-
clare templates can be organised in a hierarchy of constraints, depending
on a notion of subsumption, as discussed in Section 3.3. This notion of sub-
sumption is tightly related to that of redundancy, since a constraint can be
immediately recognised as redundant if it is subsumed by another constraint
present in the partial declarative process model discovered so far. However,
we stress the fact that redundancy could be detected, in some cases, only by
analysing the model as a whole, and not just considering pairs of constraints.

When using MINERful on the BPI challenge 2012
event log with a support threshold of 75%, it returns
the constraints ChainResponse(A Submitted, A PartySubmitted) and
NotChainSuccession(A Submitted, A Accepted). The latter constraint is clearly
redundant, because the former requires the first task following A Submitted to
be A PartySubmitted. Therefore, no other task but A PartySubmitted can directly
follow. A fortiori, A Submitted and A Accepted cannot be in direct succession.
Clearly, such redundant constraint pairs should not be returned.

4.3. Framing the Problem

In Section 4.1 and Section 4.2, we have introduced the issues of consis-
tency and redundancy in declarative process models. We now frame these
problems in the context of declarative process discovery.

Our goal is to define effective post-processing techniques that, given a
previously discovered Declare modelM possibly containing inconsistencies
and redundancies, manipulate it by removing inconsistencies and reducing
redundancies, but still retaining as much as possible its original structure. In
this respect, the post-processing is completely agnostic to the process mining
algorithm used to generate the model as well as to the input event log.

This latter assumption makes it impossible to understand how much a
variant of the discovered model fits with the log. However, we can at least
assume that each single constraint inM retains the support, confidence, and
interest factor that were calculated during the discovery phase. These values
can be used to decide which constraints have to be prioritised, and ultimately
decide whether a variant M′ of M has to be preferred over another variant
M′′.

In principle, we could obtain an optimal solution by exhaustive enumer-
ation, executing the following steps:
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1. The vocabulary A of M is extracted;

2. The set CA of all possible candidate constraints is built;

3. The power-set P
(
CA
)

of all possible subsets of CA, i.e., of all possible
Declare models using constraints in CA, is computed;

4. A set of candidate models M̂ over A and C is obtained from P
(
CA
)
, by

filtering away those models that are inconsistent or contain redundant
constraints;

5. A ranking of the models in M̂ is established, considering their similarity
to the original discovered model M.

However, this exhaustive enumeration is unfeasible in the general case,
given the fact that it requires to iterate over the exponentially many mod-
els in P

(
CA
)
, an intractably huge state space. Consequently, we devise a

heuristic algorithm that mediates between optimality of the solution and
computational efficiency. In summary, its main features are the following:

• It produces as output a consistent variant of the initial modelM. This
is a strict, necessary requirement.

• The algorithm works in an incremental fashion, i.e., it constructs the
variant of M by iteratively selecting constraints. Once a constraint is
added, it is not retracted from the model. This is done by iterating
through the candidate constraints in descending order of suitability.
The degree of suitability is dictated by an ordering relation that sorts
the constraints before the algorithm starts the checking phase. An
example of such an ordering relation is the ranking of constraints on
the basis of their support, confidence, and interest factor: It makes the
algorithm retain the constraints that better fit the log from which they
were discovered. On the one hand, this drives our algorithm to favour
more suitable constraints and remove less suitable constraints in the
case of an inconsistency or a redundancy. On the other hand, this has
a positive effect on performance and also guarantees that the algorithm
is deterministic.

• Due to incrementality, the algorithm is not guaranteed to produce a
final variant that is redundancy-free and minimal in the number of con-
straints, but we still achieve a local minimum. Our experimental find-
ings show that this local minimum is satisfactory, since the algorithm is
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Figure 3: FSAs accepting the traces compliant with some Declare constraints over the log
alphabet {a, b, c}.

able to significantly reduce the number of redundant constraints w.r.t.
the state-of-the-art discovery algorithms.

5. The approach

This section describes how we tackle the problem of finding a non-
redundant consistent Declare model in a way that reduces the intractable
theoretical complexity. First, we present the algebraic structure on top of
which the check of redundancies and conflicts is performed: It bases upon
the mapping of the conjunction of Declare constraints to the product of
FSAs. Thereafter, we define and discuss the algorithm that allows us to pur-
sue our objective. In particular, we rely on the associativity of the product
of FSAs. This property allows us to check every constraint one at a time
and include it in a temporary solution. This is done by saving the product
of the constraints checked so far with the current one. For the selection of
the next candidate constraint to check, we make use of a greedy heuristic,
which explores the search space by gathering at every step the constraint
that has the highest support or is most likely to imply the highest number of
other constraints. Notice that the commutativity of the automata product
guarantees that conflicting constraints are found, regardless of the order with
which they are checked. The algorithm proceeds without visiting the same
node in the search space twice.

5.1. Constraints as Automata

As already shown in [21], Declare constraints can be formulated as reg-
ular expressions (REs) over the log alphabet. The assumption is that every
task in the log alphabet is bi-univocally identified by a character. Thus,
traces can be assimilated to finite sequences of characters (i.e., strings) and
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Figure 4: Product automata of the FSAs shown in Figure 3

regular languages represent the traces allowed by a Declare model. A con-
straint is thus evaluated to true over a trace if and only if the corresponding
string is matched by the constraint’s regular expression.

Using the POSIX wildcards, we can express, e.g., Init(a) as a.*, and
Response(a, b) as [^a]*(a.*b)*[^a]*. The comprehensive list of trans-
positions for Declare templates is listed in Table 1 and explained in
[41]. Henceforth, we will refer to such a mapping as EReg(C), which
takes as input a constraint C and returns the corresponding RE: E.g.,
EReg(Response(a, b))=[^a]*(a.*b)*[^a]*. If we consider the operations of
conjunction between Declare constraints (∧) and intersection between REs
(&), EReg is a monoid homomorphism w.r.t. ∧ and &. In other words, given
two constraints C and C ′, EReg(C ∧ C ′) = EReg(C) & EReg(C ′), preserving
closure, associativity and the identity element (resp., > and .*).

As mentioned in Section 3.4, an RE can always be associated to a de-
terministic labelled FSA, which accepts all and only those finite strings that
match the RE. We name as A the operation leading from an RE to an
FSA, thus we have that a Declare constraint can be associated with its
corresponding FSA, AC = A (EReg(C)). Henceforth, we also call AC the C-
automaton. Under this interpretation, a constraint C is evaluated to true
over a trace if and only if its events can be replayed as a finite path on the C-
automaton that terminates in an accepting state, i.e., when its corresponding
string is accepted by the C-automaton.

Considering an example declarative process model
M = 〈A, {Init ,AlternateResponse,ChainPrecedence, . . .}, Γ〉 with A = {a, b, c}
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and Γ = {Init(a),AlternateResponse(a, b),ChainPrecedence(b, c)},
the C-automata of the set of constraints Γ are drawn in Fig-
ure 3: A (EReg(Init(a))), A (EReg(AlternateResponse(a, b))), and
A (EReg(ChainPrecedence(b, c))) are depicted in Figure 3(a), Fig-
ure 3(b), and Figure 3(c), respectively. Figure 4 shows the product
automata that are derived from the intersection of such constraints:
A (EReg(Init(a))) × A (EReg(AlternateResponse(a, b))) is illustrated in
Figure 4(a), and A (EReg(Init(a))) × A (EReg(AlternateResponse(a, b))) ×
A (EReg(ChainPrecedence(b, c))) is illustrated in Figure 4(b).

We remark that by applying A to the RE of a conjunction of constraints,
we obtain an FSA that corresponds to the product × of the FSAs for the
individual constraints [36]: A (EReg(C ∧ C ′)) = A (EReg(C))×A (EReg(C ′)).
Also, we recall that the identity element for FSAs is a single-state automaton
whose unique state is both initial and accepting, and has a self-loop for each
character in the considered alphabet.

Given a model M = 〈A,C,Γ〉, we can therefore implicitly describe the
set of traces that comply with M as the language accepted by the product
of all C-automata (one for every C ∈ Γ). In the light of this discussion,
our approach searches a solution to the problem of finding a non-redundant
consistent Declare model within the automata-product monoid, i.e.,
the associative algebraic structure with identity element (the universe-set of
FSAs) and product operation ×. For the automata-product monoid, the
property of commutativity holds.

5.2. Sorting Constraints

The objective of the algorithm is to visit the constraints in the declarative
process model only once. At every visit, the analysed constraint is checked
whether it is conflicting or redundant. In the first case, it is relaxed (replaced
by the subsuming constraint) and checked again. If the constraint is not
subsumed by any another, it is removed from the set of constraints. In
case of redundancy, the constraint under analysis is removed from the set of
discovered constraints. The order in which the constraints are checked is thus
of utmost importance, as it determines their priority. The priority, in turn,
implicitly defines the “survival expectation” of a constraint, as constraints
that come later in the list are more likely to be pruned if they are either
redundant or conflicting.

We identify four notions of ordering relations for declarative process mod-
els. Three of them are suitable for all models, i.e., (i) order on the degree
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of activation linkage 6 , (ii) partial order on the type 6T, and (iii) partial
order on the subsumption 6w; the last one is specific for discovered models,
i.e., (iv) order on support, confidence, and interest factor 6σκι.

The first ordering relation is based on the notion of degree of activation
linkage. Given a constraint C in the template instantiation relation Γ of a
modelM and its activation C|•, it counts the number of tasks that play the
role of target in constraints that share the same activation of C. Formally,

 (C,Γ) = |{a ∈ A : ∃C ′ ∈ Γ s.t. a = C ′|⇒ and C|• = C ′|•}| . (8)

Recalling that we consider for unary constraints the acti-
vation to coincide with the target, for the example model
M = 〈A, {Init ,AlternateResponse,ChainPrecedence, . . .}, Γ〉, where
A = {a, b, c} and Γ = {Init(a),AlternateResponse(a, b),ChainPrecedence(b, c)},
we have that (i)  (Init(a), Γ) = 2, (ii)  (AlternateResponse(a, b), Γ) = 2,
(iii)  (ChainPrecedence(b, c), Γ) = 1. The (total) order on the degree of
activation linkage is thus defined as follows:

C 6 C ′ ⇐⇒ (C,Γ) 6 (C ′,Γ), with C,C ′ ∈ Γ. (9)

This relation is meant to sort constraints by the number of tasks that are
subject to conditions over the execution of their activation.

The partial order on the type of constraints is driven by the expertise ac-
quired in the last years in the context of Declare discovery [30, 19]. In par-
ticular, we tend to preserve those constraints that have the potential of induc-
ing the removal of a massive amount of other constraints due to redundancy.
As an example, consider the case of the Init template: Given a ∈ A, if Init(a)
holds true, then also the relation constraint Precedence(a, b) is guaranteed to
hold true for every b ∈ A\{a}. This means that, in the best case, |A|−1 con-
straints will be removed because they are all redundant with Init(a). Simi-
larly, consider the positive relation constraint ChainResponse(a, b): It implies
NotChainSuccession(a, c) for every c ∈ A\{a, b}. Thus, ChainResponse(a, b)
has the potential of triggering the removal of |A|−2 negative constraints due
to redundancy. Therefore, the ordering by type sorts constraints according
to the following ranking from the highest to the lowest:

5. position constraints,

4. cardinality constraints,
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3. coupling constraints,

2. forward- and backward-unidirectional relation constraints,

1. negative constraints.

We define the partial order on the subsumption as follows:

C 6w C
′ ⇐⇒ C w C ′ (10)

Those constraints that have the highest likelihood to induce other constraints
are ranked the highest by both the last two orderings. Therefore, their appli-
cation seems to be suitable to prune out the highest number of constraints,
especially during the redundancy check. Therefore, we introduce the hybrid
ordering relation 6Tw, defined as follows:

C 6Tw C
′ ≡ (C 6T C

′ ∧ ¬ (C ′ 6T C)) ∨ C 6w C ′. (11)

In essence, it compares the type of constraints C and C ′. If they are the
same, i.e., C 6T C

′ ∧ ¬ (C ′ 6T C)) holds true, then the comparison is made
on the basis of 6w.

Finally, for discovered declarative process models, functions σ, κ and ι
are defined for constraints. Therefore, the last ordering relation based on
these functions can be applied:

C 6σκι C
′ ⇐⇒ σ(C,L) 6 σ(C ′, L)∨κ(C,L) 6 κ(C ′, L)∨ ι(C,L) 6 ι(C ′, L) .

(12)
Such an ordering is meant to give priority to those constraints that are vi-
olated the least within the event log or whose constrained activities occur
most frequently. The idea is to remove those constraints that are redundant
or conflicting starting from those that are less fitting with the event log.

The aforementioned ordering relations are not strict, because they are
not asymmetric: For instance, in the example given for the order on the
degree of activation linkage, both Init(a) 6 AlternateResponse(a, b) and
AlternateResponse(a, b) 6 Init(a) hold true. Since the number of con-
straints in a model is finite, we can assume the existence of a strict total order
over constraints 6# s.t. only one of the following three statements holds for
every pair of constraints C, C ′: Either (i) C 6# C ′, or (ii) C ′ 6# C, or
(iii) C = C ′. Relation 6# can be based, e.g., on a perfect hash relation, or
on an enumeration-based ordering of constraints. This notion allows us to
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Figure 5: An example of a Declare model.

postulate the creation of a strict total order relation 6 based on a sequential
application of any combination 〈61, . . . ,6n〉 of the aforementioned ordering
relations 6 , 6Tw, and 6σκι. This is inductively defined as follows:

C 6
〈61,...,6n〉

C ′ ≡
∨

i∈[1,n−1]

(C 6i C
′ ∧ C ′ 6i C) ∨ C 6i+1 C

′ ∨ (C 6# C ′) .

(13)
This relation orders constraints by applying the first ordering relation 61 to
the pair of constraints (C,C ′). If they are such that C 61 C

′ and C ′ 61 C,
then the comparison by means of 62 is applied, and so forth till the n-th
stage is reached. Then, 6# is applied. By definition, 6# is a strict total
order, therefore it holds that C 6# C ′ and C ′ 6# C if and only if C = C ′.

We introduce an algorithm henceforth referred to as
sortBy

(
Γ, 〈61, . . . ,6n〉 , s�

)
. Its input consists of (i) a set of constraints

Γ, (ii) a set of ordering relation symbols 〈61, . . . ,6n〉 over constraints, and
(iii) a constant s� ∈ {ASC,DESC}, specifying whether the sort has to be
performed in an ascending (ASC) or descending (DESC) order. It returns
a list of constraints ordered on the basis of the strict total order relation
6

〈61,...,6n〉
.
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Figure 5 depicts the following example Declare model:

M = 〈A = {a, b, c, d, e, f, g, h},
C = {Participation,Precedence,NotCoExistence,Response, . . .}
Γ = {Participation(a),Precedence(a, b),

Precedence(b, c),NotCoExistence(b, e),

Participation(c),

Response(d, e),

Response(f, g),Participation(f),NotCoExistence(f, d),Response(f, h),

Response(g, h)}〉.

The application of sortBy on Γ with the ordering relation symbols 6 and
6Tw returns the following list:

sortBy(Γ, {6 ,6Tw} ,DESC) = 〈Participation(f),

Response(f, g),

Response(f, h),

NotCoExistence(f, d),

Precedence(a, b),

NotCoExistence(b, e),

Participation(c),

Precedence(b, c),

Response(d, e),

Participation(a),

Response(g, h)〉.

The order of constraints deeply affects the way in which the proposed
algorithm verifies whether they are contradicting or redundant. The
algorithm indeed iterates over the list and checks at every step the current
constraint against the ones that have already been processed. Reading
the constraints as returned by the {6Tw,6 } descending sorting, it
can be verified that Response(d, e) is classified as redundant as well as
Participation(a). The reason why Response(d, e) is recognised as redundant
resides in the fact that it imposes that e occurs after d. However, the already
visited constraint Participation(f) and NotCoExistence(f, d) respectively
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state that f always occur and that its occurrence implies d to not occur at
all. Therefore, specifying conditions based on the occurrence of task (d) is
redundant because d cannot occur. For what Participation(a) is concerned,
it is classified as redundant because of the already visited constraints
Precedence(a, b), Participation(c), and Precedence(b, c). They specify that
c must always occur (Participation(c)), and that if c occurs, then b must
precede it (Precedence(b, c)). Hence, b always occurs too. Precedence(a, b)
specifies that b cannot occur if it is not preceded by a. Thus, a must occur
as well and Participation(a) can be classified as redundant.

Notice that Response(f, h) is redundant too. In fact, Response(f, g) spec-
ifies that if f occurs, then g must occur too. Response(g, h) imposes that,
after g, h must occur. As a consequence, after f, h must also occur. How-
ever, Response(g, h) is checked only as the very last constraint in the list,
hence after Response(f, h). Therefore, Response(f, h) cannot be recognised
as redundant. The redundancy would be detected if a second iteration was
conducted over the list, by considering whether the current constraint is al-
ready implied by all the others. This is the reason why our approach provides
for such a second check, which comes at the price of a slower computation
though. Notice that we execute the second iteration from the last element
to the first one so that constraints with lower priority are processed (and in
case eliminated) first.

Finally, we remark here that there is no risk of overlooking contradicting
constraints. This can be intuitively explained by the fact that a contradict-
ing constraint always leads to an empty model, regardless of whether it is
evaluated as first or last. The different order can only affect which constraint
among the ones in conflict is checked last and hence classified as contradict-
ing.

5.3. The Algorithm

Algorithm 1 outlines the pseudocode of our technique. Its input consists
of: (i) A Declare model M = 〈A,C,Γ〉 discovered from an event log
L ∈ M (A∗), bearing a set of constraints Γ defined over log alphabet A
and repertoire C, (ii) a list of ordering relation symbols 〈61, . . . ,6n〉, and
(iii) a boolean flag rII specifying whether a second redundancy check has
to be performed or not. For every C ∈ Γ, we assume that its support,
confidence, and interest factor are given too, which is the usual condition
when M is the output of mining algorithms such as Declare Maps Miner
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Algorithm 1: Algorithm makeConsistent
(
M, 〈61, . . . ,6n〉 , rII

)
, re-

turning the suboptimal solution to the problem of finding a minimal
set of non-conflicting constraints in a discovered Declare model. Its
input consists of a declarative process model M = 〈A,C,Γ〉, a list of
ordering relation symbols 〈61, . . . ,6n〉, and a boolean flag rII, enabling
a second check for redundancies.

Input: A Declare model M = {A,C,Γ}, defined over A. M is a set of constraints for which
support, confidence and interest factor are given

Output: Set of non-conflicting constraint ΓR

/* Initialisation phase */

1 Γ′ ← removeSubsumptionHierarchyRedundancies(Γ)

2 ΓS ← {C ∈ Γ′ : σ = 1.0} // Non-conflicting constraints

3 ΓU ← Γ′ \ ΓS // Potentially conflicting constraints

4 A←
〈
A, {s0} , s0,

{⋃
σ∈A 〈s0, σ, s0〉, {s0}

}〉
// Automaton accepting any sequence of tasks

5 ΓR ← ∅ // Set of returned constraints

6 ΓV ← ∅ // Set of checked constraints

/* Prune redundant constraints from the set of non-conflicting ones */

7 ΓS
list ← sortBy(ΓS, 〈61, . . . ,6n〉 ,DESC) // Sort constraints in ΓS in descending order

8 foreach CΓS

i ∈ ΓS
list, with i ∈ [1, |ΓS

list|] do

9 ΓV ← ΓV
⋃{

CΓS

i

}
// Record that CΓS

i has been checked

10 AC
ΓS

i ← A
(
EReg

(
CΓS

i

))
// Build the constraint-automaton of CΓS

i

11 if L (A) ⊃ L

(
AC

ΓS

i

)
then // If CΓS

i is not redundant

12 A← A×ACΓS

i // Merge the CΓS

i -automaton with the main FSA

13 ΓR ← ΓR
⋃{

CΓS

i

}
// Include CΓS

i in the set of returned constraints

/* Pruning of conflicting constraints */

14 ΓU
list ← sortBy(ΓU, 〈61, . . . ,6n〉 ,DESC) // Sort constraints in ΓU in descending order

15 foreach CΓU

i ∈ ΓU
list, with i ∈ [1, |ΓU

list|] do

16 resolveConflictAndRedundancy
(
A,ΓR, CΓU

i ,ΓV
)

/* Second redundancy check */

17 if rII = > then

18 resolveRedundanciesII
(
ΓR, 〈61, . . . ,6n〉

)
19 return removeSubsumptionHierarchyRedundancies(ΓR)
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or MINERful. Table 2(a) shows an example of Γ, i.e., Γ, defined on the log
alphabet {a, b, c, d}. We also assume that the same metrics are defined for
those constraints that are not inM, yet are either their subsuming, negated,
forward or backward versions. For the sake of readability, these additional
constraints are not reported in Table 2. Table 2(b) shows the output that
corresponds to the post-processing of Table 2(a), provided that the ordering
relation symbols provided are 〈6σκι,6Tw〉 and rII is false. Constraints that
are considered as redundant are coloured in grey. Struck-out constraints are
those that are in conflict with the others and thus dropped from the returned
set.

Given M and its constraints set Γ, the first operation
removeSubsumptionHierarchyRedundancies prunes out redundant con-
straints from Γ based on the subsumption hierarchy. The procedure removes
the subsuming constraints if their support is less than or equal to the
subsumed ones. Forward and backward constraints are also eliminated if
the corresponding coupling constraint has an equivalent support. The result
is stored in Γ′. The details of this operation have already been described in
[28]. The usefulness of this procedure resides in the fact that it reduces the
number of candidate constraints to be considered, thus reducing the number
of iterations performed by the algorithm. In Table 2(b), this operation
is responsible for the elimination of Participation(a), due to the fact that
Init(a) is known to hold true.

Thereafter, we partition Γ′ into two subsets, i.e.: (i) ΓS consisting of those
constraints that are verified over the entire event log (i.e., having a support of
1.0), and (ii) ΓU containing the remaining constraints. The reason for doing
this is that the former is guaranteed to have no conflict: Given the fact that
constraints are discovered using the alphabet of the event log, those that
have a support of 1.0 can be joined, giving rise to a consistent constraint
model.

Even though constraints in ΓS are guaranteed to be conflict-free, they
could still contain redundancies. Therefore, the following part of the al-
gorithm is dedicated to the elimination of redundant constraints from this
set. To check redundancies, we employ the characterisation of constraints in
terms of FSAs. Instead, constraints in ΓU may contain both redundancies
and inconsistencies. Table 2(b) presents the partition of M into ΓS and ΓU.

First, we initialise an FSA A to be the identity element w.r.t. the au-
tomata product. In other words, A is initialised to accept any sequence of
events that map to a task in the log alphabet. This automaton incrementally
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Constraint σ κ ι

Init(a) 1.0 1.0 1.0

Participation(a) 1.0 1.0 1.0

CoExistence(a, d) 1.0 1.0 1.0

End(d) 1.0 1.0 1.0

NotChainSuccession(b, d) 1.0 0.9 0.8

NotChainSuccession(a, d) 0.75 0.5 0.5

ChainResponse(b, c) 1.0 0.9 0.8

NotChainSuccession(a, b) 0.9 0.7 0.6

NotChainSuccession(a, c) 0.8 0.7 0.6

ChainResponse(b, a) 0.75 0.9 0.9

(a) Input

i Constraint σ κ ι

Γ
S li
s
t

1 Init(a) 1.0 1.0 1.0

2 End(d) 1.0 1.0 1.0

3 CoExistence(a, d) 1.0 1.0 1.0

4 ChainResponse(b, c) 1.0 0.9 0.8

5 NotChainSuccession(b, d) 1.0 0.9 0.8

Γ
U li
s
t

1 NotChainSuccession(a, b) 0.9 0.7 0.6

2 NotChainSuccession(a, c) 0.8 0.7 0.6

4 AlternateResponse(b, a) 0.75 0.9 0.9

3 NotChainSuccession(a, d) 0.75 0.5 0.5

(b) Processed output

Table 2: Example of input constraint set processing.

incorporates the constraints of the input model based on their priority. To
set up redundancy elimination in ΓS as well as redundancy and inconsistency
elimination in ΓU, we then order their constitutive constraints according to
the criteria specified by the user, 〈61, . . . ,6n〉. The ranking determines the
priority with which constraints are analysed.

After the sorting, constraints are stepwise considered for inclusion in the
refined model by iterating over the corresponding ranked lists. Constraints
in ΓS, i.e., CΓS

i ∈ ΓS
list, are only checked for redundancy, whereas constraints

in ΓU, CΓU

i ∈ ΓU
list, are checked for both redundancy and consistency. For

every constraint CΓS

i ∈ ΓS
list, redundancy is checked by leveraging language

inclusion. In particular, this is done by computing the FSA AC
ΓS

i for CΓS

i and

then checking whether its generated language L
(
AC

ΓS

i

)
is included inside

L (A), which considers the contribution of all constraints processed so far. If
this is the case, then the constraint is dropped. Otherwise, A is extended with

the contribution of this new constraint (by computing the product A×ACΓS

i )
and CΓS

i is added to the set ΓR of constraints to be returned. In the example
of Table 2(b), CoExistence(a, d) is analysed after the existence constraints
Init(a) and End(d) based on the preliminary sorting operation. It thus turns
out to be redundant, because Init(a) and End(d) already specify that both
a and d will occur in every trace. Therefore, they will necessarily always
co-occur.

Redundancy and consistency checks of constraints CΓU

i ∈ ΓU
list is per-

formed by the resolveConflictAndRedundancy procedure (Algorithm 2). The
procedure checks the consistency of those constraints that are not redun-
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Algorithm 2: Algorithm resolveConflictAndRedundancy
(
A,ΓR, C,ΓV

)
,

adding a constraint C to the set of constraint ΓR, if it has not already
been checked (and thus included in ΓV), and is neither conflicting nor
redundant with the already added constraints.

Input: An FSA A, a set of non-conflicting constraints ΓR, a constraint C, and a list of already
checked constraints ΓV

1 if C /∈ ΓV then // If C was not already checked

2 ΓV ← ΓV
⋃
{C} // Record that C has been checked

3 AC ← A
(
EReg(C)

)
// Build the C-automaton

4 if L (A) ⊃ L
(
AC
)

then // If C is not redundant

5 if L
(
A×AC

)
6= ∅ then // If C is not conflicting

6 A← A×AC // Merge the C-automaton with the main FSA

7 ΓR ← ΓR
⋃
{C} // Include C in the set of returned constraints

8 else // Otherwise, resolve the conflict

9 if R (C) 6= > then // If a relaxation of C, i.e., R (C), exists

10 resolveConflictAndRedundancy
(
A,ΓR,R (C) ,ΓV

)
11 if C is a coupling constraint then
12 resolveConflictAndRedundancy

(
A,ΓR, fw (C) ,ΓV

)
13 resolveConflictAndRedundancy

(
A,ΓR, bw(C),ΓV

)

dant. The redundancy is, again, checked based on the language inclusion of

the language generated by the currently analysed constraint L
(
AC

ΓU

i

)
in

L (A), where A is the automaton that accumulates the contribution of all
constraints that have been kept so far. The consistency is checked through

a language emptiness test performed over the intersection of L
(
AC

ΓU

i

)
and

L (A). This is done by checking that L
(
A× ACΓU

i

)
6= ∅. In case a con-

flict is detected, we do not immediately drop the conflicting constraint,
but we try, instead, to find a more relaxed constraint that retains its in-
tended semantics as much as possible, but does not incur in a conflict.
To do so, we use the constraint subsumption hierarchy. In particular, we
use the relaxation operator to retrieve the parent constraint of the con-
flicting one, and we recursively invoke the resolveConflictAndRedundancy
procedure over the parent. The recursion terminates when the first non-
conflicting ancestor of the conflicting constraint is found or when the top of
the hierarchy is reached. The two cases are resp. covered in the example
of Table 2(b) by ChainResponse(b, a), replaced by AlternateResponse(b, a),
and by NotChainSuccession(a, d), which is removed because a non-conflicting
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ancestor does not exists. Note that NotChainSuccession(a, d) is to be
eliminated because of the interplay of the other two NotChainSuccession
constraints, Init(a) and End(d). ChainResponse(b, a) is in conflict with
ChainResponse(b, c).

If the constraint under analysis is a coupling constraint, then we know
that it is constituted by the conjunction of a corresponding pair of forward
and backward constraints. In this situation, it could be the case that all
the relaxations of the coupling constraint along the subsumption hierarchy
continue to be conflicting, but the conflict would be removed by just con-
sidering either its forward or backward component (or a relaxation thereof).
Consequently, we also recursively invoke the resolveConflictAndRedundancy
procedure on these two components.

Algorithm 3: Algorithm resolveRedundanciesII
(
ΓR, 〈61, . . . ,6n〉

)
, re-

moving from ΓR those constraints that are redundant. The check is
applied once for every constraint in ΓR, in ascending order w.r.t. the
criteria specified by 〈61, . . . ,6n〉.

Input: A set of non-conflicting constraints ΓRand a list of ordering relation symbols 〈61, . . . ,6n〉
/* Sort constraints in ΓR in ascending order */

1 ΓR
list ← sortBy

(
ΓR, 〈61, . . . ,6n〉 ,ASC

)
/* Build the product-automaton of constraints in ΓR */

2 AR ← A
(
EReg

(
C′1
))
× . . .×A

(
EReg

(
C′l
))

with C′1, . . . C
′
l ∈ ΓR and l =

∣∣ΓR
∣∣

/* Resolve redundancies */

3 foreach C ∈ ΓR
list do

4 ΓR
6C ←

⋃
C′∈ΓR

list
\{C}

{C′} // All constraints in ΓR except C

/* Build the product-automaton of all constraints in ΓR except C */

5 AR
6C ← A

(
EReg

(
C′′1
))
× . . .×A

(
EReg(C′′m)

)
with C′′1 , . . . C

′′
m ∈ ΓR

6C and m =
∣∣∣ΓR
6C

∣∣∣
6 if L

(
AR
6C

)
⊆ L

(
AR
)

then // If C is redundant

7 ΓR ← ΓR \ {C} // Remove C from the set of returned constraints

To limit the issue of missing some redundancies, due to the single iter-
ative check over the elements in the constraint lists, a second check can be
performed. The technique is slightly different from the one applied before
and requires more computational time. For this reason, (i) it is performed
after the first iteration has taken place, so as to diminish the amount of con-
straints to be verified, and (ii) it is an optional functionality, activated by
the user-specified flag rII. Its pseudocode is listed in Algorithm 3. It takes
as input a set of non-conflicting constraints ΓR and a list of order relation
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symbols 〈61, . . . ,6n〉. First, the product-automaton AR is built that con-
sists of the product of all constraint-automata of elements in ΓR. Thereafter,
constraints in ΓR are sorted according to 〈61, . . . ,6n〉 in ascending order,
i.e., the reverse order w.r.t. the first pass (this is because constraints with a
lower priority are processed first and eliminated if redundant). The ordered
list that comes out of the sorting is ΓR

list. For each constraint C in ΓR
list, a

new product-automaton is built that considers all constraints in ΓR except
C. It is hereinafter indicated as ΓR

6C . The redundancy check is thus per-
formed: If the language accepted by ΓR

6C is a subset of the language accepted
by ΓR, then the declarative process model excluding C is as restrictive as the
declarative process model including C. This means that C can be classified
as redundant.

The algorithm proceeds iteratively for all remaining constraints in ΓR
list.

Although every element in the list is visited once, the overall procedure is
expensive in terms of computation time because a new product-automaton
must be built at every step by the cross-product of l−1 constraint-automata,
where l is the cardinality of the set of input constraints ΓR. The procedure
cannot take advantage of the associativity of the cross-product operation,
because temporary automata are built at every step without storing the
intermediate result of l − 2 cross-products. However, the additional compu-
tational effort is compensated by a higher accuracy in the redundancy-check:
In the example of Section 5.2, the redundant constraint Response(f, h) would
be detected by the second-pass algorithm, whilst it was not captured in the
first check.

Finally, a last complete pass over constraints in ΓR is done, to check again
whether there are subsumption-hierarchy redundancies. If so, ΓR is pruned
accordingly.

Complexity of the Algorithm. We close this section by elaborating on the
complexity of the algorithm, considering as input the number of constraints
contained in the discovered model. To better highlight the different sources of
complexity, we consider the overall complexity as well as the complexity ob-
tained from the crude algorithm, without considering the contribution of the
automata-manipulating operations. This is particularly important because,
even though in the worst case the automata-manipulating operations are
exponential in the number of constraints, in practice, they have a nonmono-
tonic behavior. Consider, for example, the cross-product operation between
an automaton A and the automaton AC = A (EReg(C)) of constraint C: It
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is not guaranteed that A × AC has a number of states bigger than that of
A. This is witnessed, e.g., by the automaton in Figure 6: The size of the
automaton of Figure 4(b), generated by Init(a), AlternateResponse(a, b), and
ChainPrecedence(b, c), is bigger than the size of its cross-product with the
automaton of AtMostOne(c).

Theorem 5.1. Given a Declare model M containing n constraints, a list
〈61, . . . ,6n〉 of ordering relation symbols, and a boolean flag rII, algorithm
makeConsistent

(
M, 〈61, . . . ,6n〉 , rII

)
runs in time

• O(2n), if the automata-manipulating operations are considered part of
the algorithm;
• O(n2), if rII is true (i.e., the algorithm includes redundancy double

check) and the automata-manipulating operations are considered not
part of the algorithm;
• O(n · log(n)), if rII is false (i.e., the algorithm skips redundancy double

check) and the automata-manipulating operations are considered not
part of the algorithm.

Proof. As shown in [28], operation removeSubsumptionHierarchyRedun-
dancies (lines 1 and 18 in Algorithm 1) requires a check based on a
depth-first visit on a subsumption hierarchy’s direct acyclic graph (see
Figure 1) for every constraint in the input model. For the coupling
constraints, also their related forward- and backward-unidirectional re-
lation constraints are considered. The hierarchy structure is however
fixed and the number of steps for the visit are thus limited. In
particular, the worst case is represented by ChainSuccession(a, b), as
it can be seen in 1. It requires at most 6 comparisons: 4 for
the subsuming constraints, i.e., AlternateSuccession(a, b), Succession(a, b),
CoExistence(a, b), RespondedExistence(a, b), and 2 for the forward- and
backward-unidirectional relation constraint, resp. ChainResponse(a, b) and
ChainPrecedence(a, b). Both invocations thus cost O(n). By construction,
operation removeSubsumptionHierarchyRedundancies returns a set of con-
straints Γ′ such that |Γ′| 6 n.
Lines 7 and 14 of Algorithm 1 both apply a sorting algorithm to sets of con-
straints ΓS and ΓU, respectively. Notice that |ΓS| 6 n and |ΓU| 6 n. An
efficient algorithm such as merge-sort consequently requires O(n · log(n)) for
this step.
The instructions from line 8 to line 13 of Algorithm 1 are repeated for all

constraints in ΓS. Within the loop, A and EReg operations require O(1),
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Figure 6: Product automaton of Init(a), AlternateResponse(a, b), ChainPrecedence(b, c),
and AtMostOne(c)

since they are applied to a single constraint. To separate the sources of com-
plexity inherent to the algorithm, and those coming from the manipulation
of automata, we explicitly denote the complexity of the language-inclusion
check of line 11 and the automata-product of line 12 as �T

L⊃
and �T

A×
respec-

tively. With this notation at hand, we get that the loop from line 8 to line 13
of Algorithm 1 can be executed in O(n · (�T

L⊃
+ �T

A×
)).

At line 15 of Algorithm 1, a loop over the constraints in ΓU starts. For every
constraint in ΓU, procedure resolveConflictAndRedundancy (Algorithm 2)
is invoked. The time complexity of the procedure is affected again by
the cross-product operation and the language-check. The recursive calls
of lines 10, 12 and 13 are limited and independent of the number of con-
straints in Γ: The worst case is represented by a ChainSuccession(a, b) con-
straint passed in input as C, because it presents a chain of 4 subsuming
constraints (hence, in 4 cases a R (C) exists) and has both a forward- and a
backward-unidirectional relation constraint, namely ChainResponse(a, b) and
ChainPrecedence(a, b). For each of them, 4 further subsuming constraints ex-
ist as well (cf. Figure 1(b)). The total amount of recursive calls is thus at
most 12. However, every invocation of procedure resolveConflictAndRedun-
dancy for each constraint can include in ΓR up to 3 new constraints in place of
the passed one, because the subsuming, forward and backward-unidirectional
relation constraints may be added in line 7, executed within the respective
recursive invocations at lines 10, 12 and 13. Therefore, |ΓR| 6 3 · n, and,
in turn, the time required by the loop starting at line 15 of Algorithm 1 is
O(n · (�T

L⊃
+ �T

A×
)).

Finally, procedure resolveRedundanciesII (Algorithm 3) is invoked if and only
if parameter rII is set to > (line 17 of Algorithm 1). The constraints in ΓR

are preliminarily sorted at line 1 of Algorithm 3, with cost O(n · log(n)).
Then, automaton AR is built as the cross-product of all constraints in ΓR.
The computational complexity of this step is O(n· �T

A×
). Within the loop

starting at line 3, for every constraint C ∈ ΓR, the new automaton AR
6C is

built as the cross-product of all constraints in ΓR except C (line 5). Each
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execution of the cross-product brings, again, a cost of O(n· �T
A×

). At line 6,

the languages of AR and AR
6C are compared, with cost �T

L⊃
. All in all, the

computational cost of resolveRedundanciesII is thus O(n2· �T
A×

+n· �T
L⊃

).

To conclude, we notice that the two costs �T
A×

and �T
L⊃

can be uniformly

represented by a single source of complexity �T
A , since the inclusion checks

all depend on previous cross-product constructions.
Consequently, the overall algorithm runs in time:

O
(
n · log n︸ ︷︷ ︸

sorting

+ n· �T
A︸ ︷︷ ︸

conflict and redundancy (single) check

+ n2· �T
A︸ ︷︷ ︸

redundancy double-check

)

The three statements of the theorem directly follows, by noticing that com-
puting the cross-product automaton of (at most) n regular expressions is, in
the worst case, exponential in n [44, 45], and that the third element of the
sum above is only present when rII is true.

6. Experiments and Results

In this section, we illustrate the evaluation of our implemented approach.
The approach has been validated in terms of (i) efficacy, measured by the
number of pruned redundant constraints and detected inconsistencies, and
(ii) efficiency, measured as computation time. Experiments have been con-
ducted on process models discovered from real-world collections of event logs,
provided by the IEEE Task Force on Process Mining on the 3TU Datacen-
trum platform,1 i.e.,
• the event log of a loan application process of a Dutch financial institute,

published in the context of the BPI challenge 2012 [43],
• the collection of three event logs of the Volvo IT incident and prob-

lem management, resp. describing closed issues, incidents, and open
problems, from the BPI challenge 2013 [46],
• the event log of ITIL processes of Rabobank Group ICT, from the BPI

challenge 2014 [47], and
• the event log of a road traffic fines management process [48].

All experiments were run on a machine equipped with an Intel Core
i5-3320M, CPU at 2.60GHz, quad-core, Ubuntu Linux 12.04 operating

1http://data.3tu.nl/repository/collection:event_logs_real
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Original model 306 cns.

Detected conflicts 2 cns.

Detected redundancies 174 cns.

Gain 57.52 %

Time 9,171 msec

(a) MINERful

Original model 69 cns.

Detected conflicts 0 cns.

Detected redundancies 28 cns.

Gain 40.58 %

Time 2,764 msec

(b) Declare Maps Miner

Table 3: Results of the application of the approach on the models discovered from the
BPIC 2012 log [43] by MINERful and Declare Maps Miner.

system. The tool was implemented in Java SE 7 and integrated with
the MINERful declarative process miner. It can be downloaded at:
www.github.com/cdc08x/MINERful.

In the following subsections, we show (i) an in-depth analysis of the re-
sults obtained by checking consistency and redundancy of the models dis-
covered with MINERful and Declare Maps Miner from the loan application
process log and (ii) a summary of the results obtained from the redundancy
check conducted over the models discovered from all aforementioned logs.
We recall here that both MINERful and Declare Maps Miner already pro-
vide ad-hoc techniques to reduce the size of the returned models [28, 19].
Nevertheless, no mechanism allows them to remove inconsistencies or those
non-trivial redundancies that our approach is able to find out.

6.1. Consistency and Redundancy Checking (BPI challenge 2012)

Here, we describe the outcome of the application of the proposed ap-
proach to detect inconsistencies over a declarative process model discovered
from the event log provided for the BPI challenge 2012. The BPI challenge
2012 log was chosen for such an analysis because it is the one that presents
inconsistencies in the discovered model already at relatively elevated thresh-
olds of support. The event log pertains to an application process for personal
loans or overdrafts. It contains 262,200 events distributed across 24 event
classes and includes 13,087 traces. With this experiment, we show that our
approach is capable of pruning the discovered models by detecting inconsis-
tencies within the constraints discovered by two state-of-the-art declarative
process discovery algorithms: MINERful and Declare Maps Miner. We set
up both miners to return constraints with a support higher than 75%, a
confidence higher than 12.5%, and an interest factor higher than 12.5%. In
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a realistic scenario, indeed, event logs could contain errors due to recording
mistakes or exceptional deviations from the usual execution [7]. Therefore,
it makes sense to include those rules that are not fulfilled in the totality of
the cases. Since we do not know how many errors or exceptional process
enactments affected the log under analysis, we based our choice upon pre-
vious studies on the sensitivity of the discovered Declare constraints to
the presence of noise in event logs [26]. The levels of confidence and interest
factor are motivated by the need to limit the unavoidable increased num-
ber of constraints that are included in the result as the support threshold is
lowered.

Table 3 summarises the results of the experiment. In the first set
of experiments (Table 3(a)), we used MINERful. The number of dis-
covered constraints was 306. On top of that, we applied the proposed
algorithm, setting 〈6 ,6σκι,6Tw〉 as the ordering relation symbols and
rII to false. We obtained 130 constraints in total, with an execution
time of 9,171 milliseconds. In the original set of 306, there were two
sets of conflicting constraints that made the entire model inconsistent.
The first set was NotChainSuccession(A Preaccepted,W Completeren aanvrag),
ChainResponse(A Preaccepted,W Completeren aanvrag), and
Participation(A Preaccepted). The second set was
NotChainSuccession(W Completeren aanvraag, A Accepted),
ChainResponse(W Completeren aanvraag, A Accepted), and
Participation(W Completeren aanvraag). Both inconsistencies were detected
by our algorithm. Note that the percentage of reduction over the set of
discovered constraints (that was already pruned based on the subsumption
hierarchy) was of 58%.

In the second set of experiments (Table 3(b)), we used the Declare Maps
Miner. We discovered a set of constraints using the same thresholds for
support, confidence and interest factor adopted for the previous experiment.
The tool (that provides an ad-hoc technique for pruning) discovered 69 con-
straints. By applying the proposed algorithm starting from this set, we
obtained 41 constraints (with an execution time of 2,764 milliseconds). The
percentage of reduction was still around 40%.

Redundant constraints can be pruned based on complex reduction
rules that are not supported by the state-of-the-art declarative process
discovery algorithms. For example, from our experiments, we derived that
AtMostOne(A Finalized) becomes redundant due to the presence in combi-
nation of AtMostOne(A PartlySubmitted), Participation(A PartlySubmitted),
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and AlternatePrecedence(A PartlySubmitted, A Finalized). Indeed,
Participation(A PartlySubmitted) and AtMostOne(A PartlySubmitted) com-
bined ensure that A PartlySubmitted occurs exactly once. Then
AlternatePrecedence(A PartlySubmitted, A Finalized) ensures that either A Finalized

does not occur or if it occurs it is preceded by the unique occurrence of
A PartlySubmitted without the possibilities of other occurrences of A Finalized in
between. Another example is NotSuccession(W Nabellen offertes, A Submitted),
which is redundant with the combination of Init(A Submitted),
AtMostOne(A PartlySubmitted), Participation(A PartlySubmitted),
and ChainSuccession(A Submitted, A PartlySubmitted). Indeed,
AtMostOne(A PartlySubmitted) and Participation(A PartlySubmitted) com-
bined ensure that A PartlySubmitted occurs exactly once. This constraint
in combination with ChainSuccession(A Submitted, A PartlySubmitted) and
Init(A Submitted) ensures that A Submitted occurs only once at the beginning
of every trace and, therefore, it can never occur after any other activity.

We want to finally remark that the pruning of redundancies of our ap-
proach does not alter the behaviour of the returned model. Those constraints
that are eliminated are indeed those that can be removed without affecting
the way in which the process can be enacted, because they do not restrict
the possible executions any further. This is substantially different from the
pruning based on thresholds like support, confidence and interest factor that
modifies the set of the allowed behaviours. The next subsection illustrates
a comprehensive view on the results of redundancy checking performed on a
large set of real-world event logs.

6.2. Redundancy Checking Analysis

To assess the capability of the proposed approach to identify and prune
the redundant constraints from a model, we ran the implemented algorithm
on process models discovered from real-world logs. We utilised MINER-
ful to discover the declarative process models from every log provided by
the past editions of the BPI challenges in (i) 2012, (ii) 2013, (iii) 2014,
and from (iv) the real-world event log of road traffic fines management pro-
cess. Hereinafter, we will refer to the respective discovered process models as
(i) “BPIC 2012”, (ii) “BPIC 2013/1”, “BPIC 2013/2”, and “BPIC 2013/3”,
(iii) “BPIC 2014”, and (iv) “Fines”.

We have set the support threshold to 75% for the discovery phase. For
the first log in the list, we have set the thresholds for confidence and interest
factor to 25% and 12.5%, respectively, whereas for the remaining ones we
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have used the thresholds 12.5% and 6.25%. These values were chosen so as to
keep the returned constraints in a range that allowed several computationally
intensive routines: (i) 226 for BPIC 2012, (ii) 30 for BPIC 2013/1, 76 for
BPIC 2013/2, and 20 for BPIC 2013/3, (iii) 108 for BPIC 2014, and (iv) 46
for Fines. We have applied our technique on every discovered process
model using every combination of defined ordering relations 6 , 6Tw, and
6σκι, plus a random sort used as a baseline. In all the aforementioned cases,
the proposed algorithm was run twice: Once having the boolean flag rII

set to true, thus enabling the second pass over the pruned constraints and
once having rII set to false. For every run, we have measured the number of
redundancies pruned, the computation time needed, and the average support
σ, confidence κ, and interest factor ι of the returned constraints. We use the
first metric to assess the efficacy of our approach, the second one to evaluate
its efficiency, and the last three to estimate the fitness of the pruned model
w.r.t. the original log.

Table 4 shows the obtained results on BPIC 2014 with (Table 4(b)) and
without (Table 4(a)) the second-pass procedure enabled, respectively. The
ordering relations are listed in the tables in their order of application. For the
sake of readability, only the subscript under the > symbol is shown: Hence,
e.g., “Tw  ” stands for the consecutive application of ordering relations
6Tw and 6 to sort the constraints. In Table 4(a), the highlighted lines
show the best sorting policies when the second pass is not enabled in terms
of number of computation time, average support/confidence/interest factor
of the returned constraints, and detected redundancies. The results confirm
the influence of the adopted sequences of ordering relations on the examined
metrics: The lowest computation time is achieved when 6 is applied first
(1,027 milliseconds), the highest combination of average σ, κ, ι is obtained
when 6σκι is applied first (resp., 0.932, 0.473, 0.369), and the highest number
of detected redundancies (30 over 108, i.e., 27.778%) is obtained when 6Tw
is applied first. Table 4(b) shows the effect of the application of the second-
pass check: The number of detected inconsistencies considerably raises in
the range of 38 to 40 with a tangible gain of 26% to 166.667% over the
first pass. This, however, comes at the price of a far slower computation
time, about 10 to 20 times slower, and of a general decrease in terms of
average support/confidence/interest factor. We remark here that the number
of performed checks remains acceptable despite the second pass: In no case
they amount to more than 199, hence not more than twice the number of the
constraints in the original model (108). This helps the computation time to
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Sorting Redundancies Time [msec] Avg. Supp.% Avg. Conf.% Avg. IntF.%

 Tw σκι 28 1154 92.683 46.402 37.494

 σκι Tw 27 1027 92.774 46.218 37.420

Tw  σκι 29 1911 92.583 45.919 37.112

Tw σκι  28 1677 92.488 45.831 36.965

σκι  Tw 15 1584 93.223 47.315 36.936

σκι Tw  15 1737 93.223 47.315 36.936

 σκι 27 1064 92.774 46.218 37.420

 Tw 28 1078 92.683 46.402 37.494

Tw σκι 28 1629 92.488 45.831 36.965

Tw  30 1899 92.488 45.444 36.525

σκι Tw 15 1731 93.223 47.315 36.936

σκι  15 1608 93.223 47.315 36.936

 28 1231 92.683 46.402 37.494

Tw 30 1565 92.488 45.444 36.525

σκι 15 1824 93.223 47.315 36.936

Random 26 1451 92.273 46.493 36.927

(a) Single pass

Sorting Checks Redundancies (2nd) Time (2nd) [msec] Avg. Supp.% Avg. Conf.% Avg. IntF.%

 Tw σκι 186 38 (10) 24767 (23699) 91.639 43.108 34.395

 σκι Tw 187 38 (11) 25937 (24884) 91.639 43.108 34.395

Tw  σκι 185 40 (11) 25684 (23960) 91.383 42.909 35.295

Tw σκι  186 40 (12) 28954 (27250) 91.383 42.909 35.295

σκι  Tw 199 40 (25) 35621 (34073) 91.401 43.122 35.472

σκι Tw  199 40 (25) 36020 (34422) 91.401 43.122 35.472

 σκι 187 38 (11) 27071 (25929) 91.639 43.108 34.395

 Tw 186 38 (10) 24596 (23590) 91.639 43.108 34.395

Tw σκι 186 40 (12) 27362 (25715) 91.383 42.909 35.295

Tw  184 40 (10) 27257 (25623) 91.383 42.909 35.295

σκι Tw 199 40 (25) 37793 (36104) 91.401 43.122 35.472

σκι  199 40 (25) 37316 (35684) 91.401 43.122 35.472

 186 38 (10) 25771 (24652) 91.639 43.108 34.395

Tw 184 40 (10) 27259 (25776) 91.383 42.909 35.295

σκι 199 40 (25) 36956 (35188) 91.401 43.122 35.472

Random 188 40 (14) 25041 (23788) 91.394 42.891 35.244

(b) Double pass

Table 4: Results of the experiments over the model discovered from the BPIC 2014 [47]
log.

43



Process Input cns. Redundancies 1st pass 2nd pass

BPIC 2012 226 204 (90.265%) 154 (68.142%) 50 (22.124%)

BPIC 2013/1 30 12 (40%) 9 (30%) 3 (10%)

BPIC 2013/2 76 36 (47.368%) 21 (27.632%) 15 (19.737%)

BPIC 2013/3 20 5 (25%) 5 (25%) 0 (0%)

BPIC 2014 108 38 (35.185%) 28 (25.926%) 10 (9.259%)

Fines 46 30 (65.217%) 25 (54.348%) 5 (10.87%)

Table 5: Highest amounts of detected redundancies in the process models.

remain under 40 seconds in all cases. We recall here that an exhaustive search
would have required up to approximately 3× 1032 checks over an equivalent
number of cross-products between automata, thus being computationally
infeasible.

Table 5 shows the boost effect in terms of detected redundancies given
by the second-pass strategy. The highest numbers in terms of pruned re-
dundant constraints are depicted there. Noticeably, 90.265%, 65.217%, and
47.368% of constraints are classified as redundant for BPIC 2012, Fines, and
BPIC 2013/2, respectively. This entails that a significant number of con-
straints could have been omitted from the returned models without altering
the set allowed behaviours.

Figure 7 shows the proportion of pruned constraints over all analysed
logs using the sorting that worked best in terms of redundancy detection,
i.e., 〈6Tw, 〉. The abscissae indicate the types of templates. Triples
of bars respectively represent the cumulative number of constraints that
sum up (i) in all input models, (ii) after the first redundancy check, and
(iii) after the second-pass redundancy check. Horizontal lines describe
the average percentage of pruned constraints after the two redundancy
check phases, resp. 50.4% and 64.03%. Relation constraints in particular
tend to be more subject to redundancy, because more than half of them
are pruned by the application of the proposed algorithm. This can be
due to several factors. First, existence constraints can imply many re-
lation constraints, as in the case, e.g., of Participation(a), implying that
also RespondedExistence(b, a) holds true for all b ∈ A \ {a}. Further-
more, non-chain relation constraints are also transitive: Therefore, if, e.g.,
Response(a, b) and Response(b, c) hold true, also Response(a, c) must hold
true. Finally, relation templates create a hierarchical structure of subsump-
tions, thus parents along the hierarchy branches tend to be often pruned
out: This is the case, e.g., when ChainPrecedence(a, b) holds true, thus mak-
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Figure 7: Redundancy reduction w.r.t. template types.

ing AlternatePrecedence(a, b), Precedence(a, b) and RespondedExistence(b, a)
redundant.

Table 6 shows how the sorting order influences the resulting model in
all the examined cases. All these results refer to the application of the pro-
posed algorithm only in its first phase, because the second pass tend to alter
and level off the metrics of interest. Table 6(a) presents the sequences of
ordering relations that maximise the number of pruned constraints: For all
models, 6Tw is the only ordering relation that occurs in every combination.
Table 6(b) lists the sequences of ordering relations that allow for the highest
support, confidence and interest factor. As expected, 6σκι is always involved.
Table 6(c) presents the best achieved computation times. In this case, 6 
is always in the list of ordering relations. Finally, Table 6(d) shows the ap-
plication of a random sort as a baseline: As expected, the random sort leads
to less efficacy in terms of detected redundancies, to a higher computation
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Process Sorting Redundancies Time [msec] Avg. Supp.% Avg. Conf.% Avg. IntF.%

BPIC 2012 Tw 172 2265 98.567 53.430 27.920

BPIC 2013/1 Tw σκι  9 262 92.659 37.463 29.696

BPIC 2013/2 Tw  σκι 21 1165 96.129 36.108 25.423

BPIC 2013/3  σκι Tw 5 255 92.837 28.452 18.940

BPIC 2014 Tw 30 1565 92.488 45.444 36.525

Fines Tw 25 328 96.744 54.648 33.710

(a) Maximimsing pruned redundancies

Process Sorting Redundancies Time [msec] Avg. Supp.% Avg. Conf.% Avg. IntF.%

BPIC 2012  σκι 138 3283 98.659 53.304 29.626

BPIC 2013/1  σκι Tw 6 287 93.384 42.105 35.299

BPIC 2013/2 σκι  Tw 6 1376 96.546 39.187 28.764

BPIC 2013/3 σκι Tw  3 211 93.489 33.155 20.270

BPIC 2014  Tw σκι 28 1154 92.683 46.402 37.494

Fines σκι  23 315 97.027 63.272 37.685

(b) Maximising support, confidence, and interest factor

Process Sorting Redundancies Time [msec] Avg. Supp.% Avg. Conf.% Avg. IntF.%

BPIC 2012  149 1643 99.163 52.332 29.551

BPIC 2013/1 σκι  Tw 6 259 93.403 39.496 32.711

BPIC 2013/2 Tw  σκι 21 1165 96.129 36.108 25.423

BPIC 2013/3  Tw σκι 3 210 93.489 33.155 20.270

BPIC 2014  σκι Tw 27 1027 92.774 46.218 37.420

Fines σκι  23 315 97.027 63.272 37.685

(c) Minimising computation time

Process Sorting Redundancies Time [msec] Avg. Supp.% Avg. Conf.% Avg. IntF.%

BPIC 2012 Random 129 6041 97.475 60.052 29.940

BPIC 2013/1 Random 3 339 91.437 36.635 29.517

BPIC 2013/2 Random 11 1511 95.054 37.062 25.049

BPIC 2013/3 Random 0 265 92.936 28.043 19.053

BPIC 2014 Random 26 1451 91.394 42.891 35.244

Fines Random 12 470 92.273 46.493 36.927

(d) Random

Table 6: Best set-ups for tests over process models discovered from real-world logs.
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time, and to an average lower support, with respect to all the values achieved
by the other sorting criteria.

The results listed in Table 7 are aggregated on the basis of applied or-
dering relations. In particular, each of them shows mean and standard de-
viation values for the metrics under analysis, resp. (i) Table 7(a) for the
number of pruned constraints, (ii) Table 7(c) for the support, confidence
and interest factor of the returned constraints, and (iii) Table 7(b) for
the computation time. Highlighted rows evidence the set-ups performing
best, i.e., (i) 〈6Tw,6 〉, allowing for pruning 42.5 constraints on average,
(ii) 〈6 〉, allowing for computation times of 854.33 milliseconds on aver-
age, (iii) 〈6σκι,6 〉, producing constraints that have an average support,
confidence, and interest factor of resp. 95.331, 45.618, and 30.485.

The outcomes illustrated both in Tables 6 and 7 show that the user’s
choice on the sorting criteria influences the quality of the result in terms
of (1) computation time, (2) pruned redundancies, or (3) fitness w.r.t. the
event log. (1) When a faster computation is required, the order on the degree
of activation linkage should be chosen. This is due to the fact that such a
criterion speeds up the building of the product automaton, which is the
most expensive operation in terms of computation time. The activations of
the constraints with a higher degree of activation linkage are indeed involved
as activations of several constraints. Consequently, the higher number of
restrictions exerted on the same activation tends to be reflected in a limited
number of states and transitions of the associated product-automaton. (2) To
maximise the amount of pruned constraints, the partial order on the type and
subsumption turns out to be the best choice. Such a criterion was indeed
introduced for this purpose. The partial order on the type of constraints
tends to rank as first those constraints that entail several other constraints,
i.e., those that induce more redundancies. (3) Finally, to keep the constraints
with a higher fitness w.r.t. the event log, the order on support, confidence,
and interest factor of constraints should be taken into account, because it
ranks first those constraints that were fulfilled and activated more often in the
event log. As they are ranked first, they are assigned a higher priority when
it comes to pruning redundancies out. Because the sorting criteria can be
sequentially composed to build a strict total order over the constraints based
on the hierarchical application of (partial) orders, different combinations of
the aforementioned criteria can be used. The relatively small amount of
required running time benefits an interactive selection of the criteria by the
users. To further refine the results achieved, the second pass can be enabled
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Redundancies

Sorting Mean Std. Dev

 35.333 56.330

 Tw 36.333 58.267

 Tw σκι 34.667 52.796

 σκι 33.667 51.717

 σκι Tw 34.167 52.442

Tw 42.500 64.214

Tw  42.500 64.190

Tw  σκι 41.000 59.097

Tw σκι 39.500 58.298

Tw σκι  39.333 57.895

σκι 31.500 51.725

σκι  31.333 51.321

σκι  Tw 31.667 52.129

σκι Tw 31.833 52.533

σκι Tw  31.833 52.533

(a) Detected redundancies

Time [msec]

Sorting Mean Std. Dev

 854.33 581.46

 Tw 879.33 687.46

 Tw σκι 1009.17 993.07

 σκι 1096.00 1156.43

 σκι Tw 1013.67 1028.96

Tw 1005.00 833.79

Tw  1077.83 875.61

Tw  σκι 1071.17 949.71

Tw σκι 1121.17 1025.05

Tw σκι  1147.50 1099.41

σκι 1214.83 1150.95

σκι  1204.50 1200.64

σκι  Tw 1211.00 1256.90

σκι Tw 1170.33 1062.78

σκι Tw  1186.17 1120.59

(b) Computation time

Avg. Supp.% Avg. Conf.% Avg. IntF.%

Sorting Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

σκι 95.328 2.2175 45.527 10.7225 30.349 6.7563

σκι  95.331 2.2225 45.618 10.7773 30.485 6.6520

σκι  Tw 95.324 2.2123 45.551 10.7363 30.370 6.7394

σκι Tw 95.321 2.2071 45.574 10.7506 30.391 6.7226

σκι Tw  95.321 2.2071 45.574 10.7506 30.391 6.7226

 95.477 2.7512 43.449 7.8523 30.041 5.9047

 Tw 95.458 2.7320 43.455 7.9847 29.941 5.9725

 Tw σκι 95.365 2.5993 43.441 7.8767 29.840 5.9915

 σκι 95.350 2.6817 44.216 10.0872 30.823 6.8060

 σκι Tw 95.335 2.6621 44.170 10.0439 30.751 6.8626

Tw 95.026 2.5021 43.296 9.2921 28.874 5.8584

Tw  95.054 2.5248 43.442 9.4212 28.856 5.7861

Tw  σκι 94.962 2.3475 43.226 9.0047 28.774 5.9934

Tw σκι 94.914 2.3141 43.280 8.6290 28.839 5.8918

Tw σκι  94.919 2.3220 43.251 8.6005 28.829 5.8968

(c) Support, confidence, and interest factor

Table 7: Average metrics of the processed models.
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at the price of a higher computational effort.
Throughout this section, the results of the application of our approach

to real-world benchmark data have been reported and analysed in depth.
Experimental evidence has shown that the proposed algorithm can find in-
consistencies in the discovered declarative models, which is an unprecedented
result in the literature. Furthermore, redundancies are found within the dis-
covered constraint sets, which amounted to approximately one third on av-
erage with a single-pass checking, and increased by a supplementary 15%
with a second pass. Both achievements were yielded in reasonable compu-
tation times: Up to 3 seconds for the single-pass and up to 40 seconds for
the double-pass. As per the experimental results, the proposed approach en-
hances the output of both MINERful and Declare Maps Miner, i.e., the two
state-of-the-art declarative process miners. The following section examines
the works published so far in the literature that deal with topics related to
our research endeavour.

7. Related Work

Our research relates to three streams of research: Consistency checking
for knowledge bases, research on process mining, and specifically research on
Declare. Research in the area of knowledge representation has investigated
the issue of consistency checking. In particular, in the context of knowledge-
based configuration systems, Felfernig et al. [49] have challenged the problem
of finding the core cause of inconsistencies within the knowledge base during
its update test in terms of minimal conflicting sets (the so-called diagnosis).
The proposed solution relies on the recursive partitioning of the (extended)
constraint satisfaction problem into subproblems, skipping those that do not
contain an element of the propagation-specific conflict [50]. In the same
research context, the work described in [51] focuses on the detection of non-
redundant constraint sets. The approach is again based on a divide-and-
conquer approach, which favours, however, those constraints that are ranked
higher in a lexicographical order. Differently from such works, we tend to
exploit the characteristics of Declare templates in a sequential exploration
of possible solutions. As in their proposed solutions, though, we base upon a
preference-oriented ranking when deciding which constraints to keep in the
returned set.

The idea to apply process mining in the context of workflow management
systems has been introduced in [52]. Processes are modelled as directed
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graphs in which vertices represent the activities and edges stand for the de-
pendencies between them. Cook and Wolf [53], at the same time, investigate
similar issues in the context of software engineering processes. They describe
three methods for process discovery: (i) Neural network-based, (ii) purely al-
gorithmic, and (iii) adopting a Markovian approach. The purely algorithmic
approach builds a finite state machine where states are fused if their futures
(in terms of possible behaviours for the next k steps) are identical. The
Markovian approach uses a mixture of algorithmic and statistical methods,
so as to cope with noise. However, the results presented in [53] are limited
to sequential behaviour only. From [52] onwards, many techniques have been
proposed. The α-algorithm [54] and its extensions α++ [55], α# [56], and
α$ [57] are algorithmic solutions that exploit behavioural relations between
pairs of activities to discover a procedural process model from an event log.
Differently from the declarative constraints of Declare, such relations are
mutually exclusive: Since they do not overlap, they are by construction non-
redundant. Behavioural profiles have been introduced by Weidlich et al. [58]
as metrics to compare the similarity of procedural process models, as well
as to measure the compliance of reported process executions w.r.t. a norma-
tive process model [59]. They also partition the product space of activities
without semantic overlaps. The work of Polyvyanyy et al. [22] proposes a
repertoire of exclusive behavioural relations between pairs of activities, along
with a thorough study of their logical and mathematical properties. These
behavioural relations are used as a means to analyse or discover procedural
models, and cannot be applied to declarative languages.

Our work is related to research on declarative process discovery and mod-
elling. In [9], the authors introduce the first version of Declare Maps Miner,
an approach based on the instantiation of a set of candidate Declare con-
straints that are checked against an event log to identify the ones that are
satisfied in a higher percentage of traces. This approach has been improved in
[19] by reducing the number of candidates to be checked through an Apriori
algorithm, originally developed by Agrawal and Srikant for mining associa-
tion rules [60]. In [61], the same approach has been applied for the repair
of Declare models based on log and for guiding the discovery task based
on Apriori knowledge provided in different forms. In this work, some simple
reduction rules are presented. These reduction rules are, however, not suffi-
cient to detect redundancies due to complex interactions among constraints
in a discovered model as demonstrated in our experimentation. In [10, 29],
the authors present an approach for the mining of declarative process models
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expressed through a probabilistic logic. The approach first extracts a set of
integrity constraints from a log. Then, the learned constraints are translated
into Markov Logic formulae that allow for a probabilistic classification of the
traces. In [62, 20], the authors present an approach based on Inductive Logic
Programming techniques to discover Declare process models. These ap-
proaches are not equipped with techniques for the analysis of the discovered
models like the one presented in this paper. In [21, 28], the authors introduce
MINERful, a two-step algorithm for the discovery of Declare constraints.
As a first step, a knowledge base is built, with information about temporal
statistics gathered from logs. Then, the statistical support of constraints is
computed by querying that knowledge base. Also these works introduce a
basic way to deal with redundancy based on the subsumption hierarchy of
Declare templates that is non capable to deal with redundancies due to
complex interactions of constraints. In [63], the authors propose an extension
of the approach presented in [21, 28] to discover target-branched Declare
constraints, i.e., constraints in which the target parameter is replaced by a
disjunction of actual tasks. Here, as well as redundancy reductions based on
the subsumption hierarchy of Declare constraints, also different aspects
of redundancy are taken into consideration that are characteristic of target-
branched Declare, such as set-dominance.

Different logic-based approaches have been used to define the semantics
of the Declare templates. In principle, they have been expressed by means
of LTL formulae [64], as in [31, 32]. Their interpretation on finite traces with
LTLf has been later clarified by [33, 34]. In [20], SCIFF integrity constraints
have been used, based on abductive logic programming [35]. Building on the
fact that LTLf has the same expressive power as FOL over finite traces
[65, 66], the works in [28, 34] describe Declare templates in such formal
representation. In [67], Declare constraints are translated into equivalent
Petri nets with weighted, reset and inhibitor arcs. In [41, 21], REs are used
to define the semantics of the Declare repertoire. Since REs and Monadic
Second Order Logic (MSO) over finite traces [34, 68] have equivalent ex-
pressiveness, REs have a higher expressive power than LTLf and, as such,
are a suitable language to include the formulation of Declare. This addi-
tional expressiveness is exploited in [69] to model Declare meta-constraints
that account for compensations and contextual constraints. Interestingly, the
techniques presented in this article can be seamlessly applied to such enriched
models.

Dynamic Condition Response Graphs (DCR Graphs) [70] are a well-
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known declarative process modelling language alternative to Declare. They
are not directly discussed from the perspective of consistency and redun-
dancy [71], but can benefit from our work due to their grounding in Büchi
automata [72].

Recently, De Smedt et al. [73] have conducted extensive studies on the
so-called “hidden dependencies” [74], i.e., on the generation of implicit con-
straints tying activities due to the interaction of other constraints explicitly
defined in a process model. The work of De Smedt et al. has lead to an
approach that automatically uncovers the hidden dependencies in order to
improve the understandability of declarative models.

8. Conclusion

In this paper, we addressed the problems of eliminating redundant and
inconsistent constraint sets that are potentially generated by declarative pro-
cess mining tools. After providing a formal definition of declarative models,
we have formalised the problem and discussed its intractability due to its
inherent exponential complexity. Thereupon, we have described our solu-
tion based on the notion of automata-product monoid and devised the cor-
responding analysis algorithms. The evaluation based on our prototypical
implementation demonstrates that constraint sets discovered with state-of-
the-art declarative process miners can be further pruned such that the result
is consistent and locally minimal.

Our approach always finds all the conflicting constraints in a declarative
process model. Furthermore, it substantially reduces the size of the discov-
ered models by removing those constraints that do not alter by any means
the allowed behaviours. It detects an elevated number of redundancies in
process models returned by state-of-the-art discovery algorithms, notwith-
standing the fact that they have built-in ad-hoc procedures to circumvent
the problem of redundancy.

The sorting criteria adopted to sequentially check the constraints play
a crucial role in determining the quality to prioritise in the result. The
partial order on the type and subsumption yields a higher number of detected
redundancies. The order on support, confidence, and interest factor promotes
those constraints that are satisfied the most and involving the most frequent
tasks, hence raising the average support, confidence and interest factor of
the constraints in the returned model. The order on the degree of activation
linkage favours a more efficient computation in terms of time. By choosing
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which criteria to adopt and in which sequence, the user can thus influence
the outcome. Nevertheless, it is in our plans to relieve the human actors
from this choice, so as to let them specify the preferred target quality to
strive for and make the algorithm automatically find a local optimum by
trying different combinations of the aforementioned sorting criteria. Such an
extension would be backed by the relatively small computation time required
to return the intermediate results to be compared. As shown in the paper,
the approach is capable of processing real-world process models in relatively
short time.

Furthermore, we are planning to integrate our approach with the one
of De Smedt et al. [73], which unveils the hidden dependencies among De-
clare constraints. The latter would drive the search for redundancies seen
as dependencies from a core set of constraints, interactively decided by the
user. It is also in our plans to involve the users to receive feedback on the
outcome of the pruning technique in order to gain a better understanding on
the perceived quality of the results, in a similar way to the studies reported
in [75, 28].

In future research, we also aim at extending our work towards redun-
dancy freedom, so as to ensure that, although not necessarily minimal, the
discovered model is provably free of redundancies. Furthermore, we want
to go beyond the pure control-flow perspective and extend our technique to
the case of data- and resource-aware declarative process mining. When min-
ing declarative constraints with references to data and resources, one of the
challenges is to identify comparable notions of subsumption and causes of
inconsistency. We also plan to follow up on experimental research compar-
ing Petri nets and Declare [1, 2]. Prior experiments in that regard shed
light on the fact that the declarative modelling approach suffered from the
lack of consistency and redundancy checks [76, 71]. The notions defined in
this paper help design declarative and procedural process models that are
equally consistent and minimal, such that an unbiased comparison would be
feasible.
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