
75

Data-Aware Declarative Process Mining with SAT

FABRIZIO MARIA MAGGI, Free University of Bozen-Bolzano, Italy

ANDREA MARRELLA and FABIO PATRIZI, Sapienza University of Rome, Italy

VASYL SKYDANIENKO, University of Tartu, Estonia

Process Mining is a family of techniques for analyzing business process execution data recorded in event logs.

Processmodels can be obtained as output of automated process discovery techniques or can be used as input of

techniques for conformance checking or model enhancement. In Declarative Process Mining, process models

are represented as sets of temporal constraints (instead of procedural descriptions where all control-flow

details are explicitly modeled). An open research direction in Declarative Process Mining is whether multi-

perspective specifications can be supported, i.e., specifications that not only describe the process behavior

from the control-flow point of view, but also from other perspectives like data or time. In this article, we

address this question by considering SAT (Propositional Satisfiability Problem) as a solving technology for a

number of classical problems in Declarative Process Mining, namely, log generation, conformance checking,

and temporal query checking. To do so, we first express each problem as a suitable FO (First-Order) theory

whose bounded models represent solutions to the problem, and then find a bounded model of such theory by

compilation into SAT.
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1 INTRODUCTION

Declarative process modeling languages have been recently proposed to represent knowledge-
intensive business processes [21], that is, processes whose control flow depends not only on the
actions performed but also on the involved data, as well as the relationships among such data. The
proposed declarative languages are used to express process models in the form of constraints, and
aim at balancing flexibility and support. With them, indeed, the modeler can elicit the (minimal)
set of constraints that must be satisfied in order to execute the process correctly, without explicitly
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stating how the participants involved in the process must actually act. In a word, the modeler
specifies the what but not the how.
While a number of declarative languages are available for this purpose (ltl, ldl, together with

potential first-order extensions, and possibly interpreted over finite traces [19]) the de facto stan-
dard in declarative process modeling is Declare [50], which, in its original propositional variant,
can be seen as a strict fragment of ltlf , i.e., the linear-time temporal logic ltl interpreted over
finite traces [19]. Declare provides a graphical language for modeling business processes in terms
of activities (atomic units of work) and constraints over sequences of activities, called traces, used
to model process executions. Constraints are predefined formulas called templates, essentially
ltlf formula templates to be instantiated with the activities of interest, ranging from standard
sequential patterns to loose relations, prohibitions, and cardinality constraints. For instance, the
template formula Fx (presence) states that activity x must eventually occur in a process trace;
template G(x → XFy) (response) expresses that whenever activity x occurs in a trace, y must
eventually occur after it. A Declare specification consists of a set of constraints of this form, to be
satisfied in conjunction.
The semantics of Declare has been defined using different logic-based approaches that enable a

wide range of reasoning and verification capabilities. Originally, it was meant to constrain control-
flow aspects only (in this sense it is said to be single-perspective), while disregarding other crucial
aspects of business processes, such as the data (i.e., the payload) carried by events, possible con-
ditions over them, as well as their interaction over time [37, 41, 56]. Previous works have tackled
these limitations by providing the language with first-order (FO) features that, combined with
the temporal operators, enable Declare to express properties about data. The resulting language
allows for modeling properties of interest from both the control-flow and the data perspective,
hence the name MP-Declare (Multi-Perspective Declare) [10].

Various approaches have been devised for the problem of verifying whether an event log,
i.e., a set of traces produced each by a process execution, satisfies a set of MP-Declare con-
straints [10, 20, 40], whereas very few have been proposed for the wider spectrum of Data-Aware
Declarative Process Mining problems that arise when data and control-flow aspects are combined.
As a result, a theoretically founded, fully integrated tool for Data-Aware Declarative Process Min-
ing is still missing.This article aims at filling this gap by adopting SAT, which stands for Propo-
sitional Satisfiability Problem, as a solving technology for a number of problems in Data-Aware
Declarative Process Mining, namely, the following: (i) Event Log Generation, i.e., the problem of
generating an event log all of which traces satisfy an input specification; (ii) Conformance Checking,
i.e., the problem of checking whether all traces in an input event log satisfy an input specification;
(iii) Query Checking, i.e., the problem of discovering the activities in an input trace that fulfill an
input query (formula with variables).
SAT, the Boolean Satisfiability problem, consists in finding a (propositional) model of a Boolean

formula γ , i.e., an assignment of truth values to the propositional variables occurring in γ , which
makesγ true. This is one of the most studied problems in Computer Science, proven to be NP-
complete in the early 1970s [13]. Since then, increasingly more efficient algorithms have been stud-
ied over the years, leading to the current solvers based on the conflict-driven clause-learning

(CDCL) approach [23], which have proven extremely efficient on real-world problem instances.
The classical approach to take advantage of such efficiency consists in reducing an instance of
a problem P (in NP) of interest to instances of SAT, which is also the approach we adopt here
(although indirectly).

While ultimately using SAT as the solution engine, we do not provide a direct compilation
schema from the problem specification to the corresponding SAT instance; instead, we take
advantage of the Alloy Analyzer tool [32] by providing a compilation schema from the original
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Fig. 1. Illustration of the proposed approach.

problems into the Alloy input language. Alloy Analyzer is a tool that takes as input a first-order
logic (FOL) specification φ, together with an integer bound b, and builds, if any, a structure
containing, overall, at most b objects, which satisfies φ; formally, Alloy Analyzer builds (if any)
a finite-model ι of φ with interpretation domain of cardinality bounded by b. In order to search
for the model ι, Alloy Analyzer first reduces, for the given bound, the specification φ into a SAT
formula, then calls a SAT solver for its solution, and finally translates the found model (if any)
back into FOL (as a set of facts). The input specification and the output model are written in Alloy,
the Alloy Analyzer input language, which can be regarded as a concrete FOL syntax.
Our interest in this tool lies in the fact that each problem above can be easily specified in FOL,

thus making Alloy Analyzer a readily available solver for our problems, as well as the SAT tech-
nology. The whole approach, including the proposed compilation and the actual solution steps, is
illustrated in Figure 1, where the internal steps of Alloy Analyzer are shown in the bottom part.
We observe that the compilation of each problem instance into Alloy is automated.

The contributions of this article are multiple. First, we propose a compilation schema of Event
Log Generation,Conformance Checking, andQuery Checking into FOL, whichmakes AlloyAnalyzer
effective as a solver, currently missing, for Data-Aware Declarative Process Mining. We stress that,
by considering the compilation step from FOL to SAT that Alloy Analyzer takes, we are in fact
proposing a compilation schema into SAT. We also observe that having a FOL formalization yields
the desirable side-result of opening the way to other forms of FOL-based reasoning, which can
be useful, in principle, to solve also other Declarative Process Mining problems where data play a
central role.
Second, the proposed approach represents a significant step forward in the solution of all three

Data-Aware Declarative Process Mining problems addressed. In fact, with SAT, it has been possible
for the first time to implement a log generator based on declarative process models including data-
aware rules. As shown in the experimentation, the log generator is applicable also to generate
reasonably large logs starting from reasonably large process models. The log generator is available
in the widely used Declarative ProcessMining tool RuM [3]. Similarly, the query checking problem
has been addressed for the first time with a solution supporting data-aware queries, i.e., queries
containing also conditions on the data perspective of a process. In our experiments, we show that
SAT is applicable to perform data-aware queries on real-life logs in a reasonable amount of time.
We have used SAT also for conformance checking. Although the ad hoc algorithms available in the
literature for data-aware conformance checking (tailored to the Declare set of rules) are generally
more efficient than the solution implemented SAT, the proposed SAT-based solution is general
purpose and, therefore, can be easily used to check any FOL rule.
Third, we carried out an experimental evaluation over the selected problems, aimed at showing

the feasibility of the approach and the effectiveness of SAT for Data-Aware Declarative Process
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Mining. The efficiency of the approach was tested by performing experiments based on synthetic
datasets of different complexity to measure the execution times needed to perform the three pro-
posed tasks. In addition, to show what type of insights can be discovered with the presented ap-
proach, and to check its scalability in real-life scenarios, we applied it to analyze a real-life event
log containing events of sepsis cases from a hospital. The SAT solver used in our experiments was
SAT4J. However, the SAT instance Alloy produces can be provided as input to any SAT solver, thus
making virtually all SAT solvers, as well as their corresponding optimizations, directly available
for Declarative Process Mining.
Finally, we have made publicly available an actual implementation of the proposed approach,

in particular the compiler from the problem instances into Alloy, together with the experimental
data that can be taken as a baseline for future research in the area.
The article is organized as follows. In Section 2, we briefly introduce some basic notions about

Process Mining, the Declare language and its variants, and the three problems considered here. In
Section 3, we present the technical framework, by recalling the basics of FOL, explaining how log
traces can be encoded in the FOL formalism and briefly discussing MP-Declare. In Section 4, we
present the formalization of Event Log Generation, Conformance Checking, and Query Checking
into FOL, and thus the Alloy language. In Section 5, we explain how the problems are solved by
resorting to Alloy Analyzer. In Section 6, we discuss the experiments we carried out. Finally, in
Section 7, we discuss the related work, and in Section 8 we draw some conclusions.

2 PRELIMINARIES

In this section, we introduce the Declare language and provide background information about
Process Mining.

2.1 The Declare Modeling Language and its Multi-Perspective Extension

The comparison between the use of procedural and declarative process modeling languages to
model a business process has been largely investigated in past years [51, 53, 62]. The results of
these studies have shown that procedural models are more suitable to support the execution of
business processes in stable and predictable environments characterized by predefined procedures.
In contrast, declarative process modeling languages like Declare work under an “open world” as-
sumption and provide process participants with a set of rules that should not be violated. This ap-
proach is suitable to model unstable and unpredictable processes since process participants have
the flexibility to follow any path that does not violate the modeled rules. Declare has been first
presented in [50].
A Declare model consists of a set of constraints applied to (atomic) activities. The semantics of

Declare constraints can be expressed in the linear-time temporal logic interpreted over finite traces,
ltlf [19]. An example of Declare constraint is the response constraint Response(a, b), which states
that if activity a occurs, b must eventually follow. Constraints of type alternate express stronger
types of relations specifying that activities must alternate without repetitions in between. Even
stronger ordering relations are specified by constraints of type chain, which state that activities
must occur one immediately after the other. Other constraints refer to the cardinality of an activity,
e.g., a has to occur at least once or at most once in a trace. There are also constraints that force
activities to be mutually exclusive or not to occur one after the other in a trace.
Concerning the semantics, the response constraint Response(a, b) is satisfied by, e.g., traces

τ1 = c a b, τ2 = b c b, and τ3 = a b b, whereas it is not satisfied by τ4 = a c b a, since the second
occurrence of a is never followed by one of b. An activation of a constraint in a trace is an event that
“triggers” the constraint by imposing an obligation on the occurrence of another event (the target).
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For example, for Response(a, b), a is an activation, because its occurrence forces b (the target) to
be executed eventually.
Recently, an extension of the Declare language, MP-Declare, has been presented in [10]. This

extension not only captures control-flow constraints (like Declare), but takes also into considera-
tion the data perspective. In particular, in MP-Declare, two types of data conditions can be defined:
activation condition and correlation condition. In these conditions, data related to the activation of
a constraint is expressed in the form A.data, whereas data that relates to the target is expressed in
the form T.data.
When the activation of an MP-Declare constraint occurs, the constraint is activated only if the

corresponding activation condition is satisfied. For example, constraint Absence(1, SendInvoice)
without conditions indicates that an invoice should never be sent. However, if we add an activation
condition such as the following:1

Absence(1, SendInvoice) [A.amount < 100],

this means that an invoice cannot be sent only if the paid amount is lower than 100.
A correlation condition must be valid when the target of a constraint occurs and can involve

data related to both activation and target. Therefore, this type of conditions can be used to specify
correlations between two events. For example, the constraint

Response(ReceivePayment, SendInvoice)
[A.amount > 100][T.orderID = A.orderID]

will only be activated if the paid amount is greater than 100. When this happens, the payment
must be followed by the delivery of an invoice for the same order.

2.2 Process Mining

Process Mining [57] is a field that studies techniques for analyzing business processes based on
event logs collected at process execution time. Some techniques, i.e., Automated Process Discovery

[4], build process models that capture the behavior of the process as recorded in an event log.
Another, i.e., Conformance checking [11], allows users to compare the real behavior of a process
derived from an event log with the expected behavior represented by a process model, suitably
expressed in a formal language, or to extend/enhance a process model by using the information
retrieved from a log. The increasing interest from industry in this area is witnessed by the growing
number of software vendors providing tools for Process Mining.2−6

As already mentioned, the main input of any Process Mining technique is an event log. XES
(eXtensible Event Stream) [29, 60] is the standard for representing event logs in XML format.
This standard represents a log as a set of traces (i.e., process executions) and traces as sequences of
events. Each event in a trace represents the execution of an activity in the process. An event must
always record a timestamp (when the corresponding activity was executed) and can (optionally)
record additional information such as the resource executing the activity, or other data elements
related to the event.
One of the main open issues in Process Mining concerns the development of multi-perspective

analysis techniques that fully leverage the heterogeneous information available in an event log,

1Activation condition and correlation condition are specified in a constraint with the format [Activation] [Correlation].
2http://fluxicon.com/disco/.
3https://www.celonis.com/intelligent-business-cloud.
4https://www.signavio.com/products/process-intelligence/.
5https://www.my-invenio.com/.
6https://www.minit.io/.
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as stated in [28]. This is especially true in the context of Data-Aware Declarative Process Mining,
which is where this article stands. Specifically, we put forward SAT as a solving technology for
the following classical problems fromData-Aware Declarative Process Mining:Generation of Event
Logs, Conformance Checking, and Temporal Query Checking, which we detail below.

Generation of Event Logs. One problem in Automated Process Discovery is that, despite the pub-
lic availability of several real-life logs that can be used to test and evaluate process discovery
techniques, these are often incomplete and/or contain noise. This aspect significantly complicates
the evaluation of the techniques, as it prevents the user from selectively stressing specific features
of the implemented algorithms, by controlling and tuning specific features of the input traces.
Event Log Generation is the problem of generating synthetic logs whose trace fulfills predefined
requirements, that the user provides as input.

Conformance Checking. Conformance checking techniques allow users to compare the behavior
of a process observed in an event log with a model of the same process representing its expected
behavior [2, 54, 58]. There are several contexts in which the analysis of the deviations of the execu-
tion of a business process from a prescriptive specification is critical, such as process auditing [59]
or risk analysis [27].

Query Checking. Query Checking [52] aims at discovering temporal properties of a trace that
are not known a priori, but respect a predefined structure. The inputs of Query Checking include a
trace and a query, i.e., a temporal logic formula containing one or more placeholders. The output is
a set of temporal logic formulas that derive from the input query by replacing all the placeholders
with propositional formulas, which make the overall formula satisfied in the trace.

3 THE FRAMEWORK

In this section, we introduce the technical framework used in the article. Essentially, we provide
an axiomatization of traces in FOL interpreted over the naturals (and additional objects). We then
show how MP-Declare constraints can be captured as FOL formulas and formalize the problems
of our interest discussed above.

3.1 Log Traces as FO Interpretations

A event e is an expression of the form a(t ,att1 = v1, . . . ,attnA = vnA ) where a is an activity
name (coming from a finite set), t is the event’s timestamp, each atti is an attribute name, and each
vi is the value assigned to atti . An event represents the execution of activity a, at time t , with
attributes atti assigned to values vi . Activity attributes are typically, but not necessarily, typed;
when this is the case, the value of the typed attribute can range only over a fixed set of values,
such as integers, strings, or enumerated sets. A trace is a finite sequence of events: τ = e1 · · · en
with non-decreasing timestamps, i.e., denoted by ti the timestamp value of event ei , it holds that
ti ≤ ti+1, for i = 1, . . . ,n − 1.

In our approach, we model traces as structures that satisfy suitable FO theories. In order to show
how this is done, we briefly recall some basics of FOL.

FOL. A (FO) signature is a tuple σ = 〈C,P,F 〉, where C is a possibly infinite set of constant
symbols, P is a finite set of predicate symbols, and F is a finite set of function symbols. Predicate
and function symbols have finite arity. When needed, we write P/a (f /a, respectively) to indicate
that a predicate P ∈ P (function f ∈ F ) symbol has arity a.

An interpretation ι of a signature σ over a (possibly infinite) universe Δ is a pair ι = 〈Δ, ·ι〉, where
·ι is the interpretation function, i.e., a function associating
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• each constant symbol c ∈ C with an object c ι ∈ Δ;
• each predicate symbol P ∈ P of arity a with a relation P ι ⊆ Δa ;
• each function symbol f ∈ F of arity a with a mapping f ι : Δa → Δ.

In the rest of the article, it will be convenient to visually distinguish constants from other symbols.
To this end, we use different fonts: v stands for a constant symbol and v for variables and other
placeholders (e.g., in events).
Given a FO vocabulary σ and a numerable set V of variable symbols, formulas φ of FOL over σ

respect the following syntax:

φ = P (�t ) | ¬φ | φ ∧ φ | ∃x .φ, where
• P ∈ P is a predicate symbol;
• �t is a tuple 〈t1, . . . , ta〉, with a the arity of P , and each ti a term from σ , i.e., a variable or a
constant symbol from σ , or a function term, i.e., an expression of the form f (�t ′), with f a
function symbol from σ and �t ′ a tuple of terms from σ , of size equal to the arity of f .

As standard, we define the following abbreviations: φ1 ∨ φ2 � ¬(¬φ1 ∧ ¬φ2), ∀x .φ � ¬∃x .¬φ,
φ1 → φ2 � ¬φ1 ∨φ2, and φ1 ↔ φ2 � (φ1 → φ2) ∧ (φ2 → φ1). The variable x in ∃x .φ (∀x .φ, respec-
tively) is an existentially (universally, respectively) quantified variable. Variables in a FO formula
do not have to be quantified, in which case they are called free variables. Formulas containing only
quantified variables are called closed formulas, or sentences, as opposed to open formulas, contain-
ing unquantified variables.
FO formulas are interpreted over FO interpretations and variable assignments, i.e., total map-

pings ν : V �→ Δ, for Δ the universe of the interpretation in question. Formula interpretations
require interpreting terms first. Given an interpretation ι = 〈Δ, ·ι〉 of σ and a term t over σ , the
interpretation of t under ν and ι is the object t ιν ∈ Δ such that

• t ιν = ν (t ), if t is a variable symbol;
• t ιν = c ι , if t is the constant symbol c;
• t ιν = f ι (t1

ι
ν , . . . , ta

ι
ν ), for a the arity of f , if t is the function term f (t1, . . . , ta ).

In this article, we assume that every interpretation ι of σ is such that (i) Δ is finite; (ii) C = Δ, i.e.,
every object in Δ is named by a constant, and the objects themselves are used as such names; and
(iii) for every c ∈ C, ι (c ) = c , i.e., every constant is interpreted as itself, i.e., we use the object itself
as its name.
Notice, in particular, that the first assumption implies that we deal only with finite interpreta-

tions.
A FO interpretation ι is said to satisfy a FO formula φ under assignment ν , written ι,ν |= φ, iff

one of the following holds:

• φ = P (t1, . . . , ta ) and 〈t1ιν , . . . , ta ιν 〉 ∈ P ι ;
• φ = ¬ϕ and ι,ν � |= ϕ;
• φ = ϕ1 ∧ ϕ2 and ι,ν |= ϕi , for i = 1, 2;
• φ = ∃x .ϕ and there exists o ∈ Δ such that ι,ν ′ |= ϕ, with ν ′(x ) = o and ν ′(v ) = ν (v ), for
v � x .

An interpretation ι satisfies a formulaφ, written ι |= φ, iff ι,ν |= φ for all assignments ν . A FO theory

Γ is a possibly infinite set of FO sentences. Here, we focus on finite theories. An interpretation is
said to satisfy a theory Γ, if ι |= φ for all φ ∈ Γ. When this is the case, ι is said to be a model of Γ.

FO Trace Theories. We model traces as models of a particular theory. A signature σ = 〈C,P,F 〉
is said to be a trace signature if (we use, as standard, the infix notation for relational operators)
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• C is a finite set containing integer values, including 0, plus a finite number of additional
object constants (possibly integer);
• P = {N /1, Seq/3,AttV /3, <, ≤,=, ≥, >};
• F = {+,−}.

We consider only those interpretations ι that interpret N as a finite interval of N0 including 0,
i.e., N ι = [0,n − 1], for some n, and where all relational operators and functions on integers are
interpreted as the restriction on N ι of the standard corresponding operators on N0 (this cannot
be expressed in FOL as, in particular, there is no axiomatization for integers). Since, as previously
noted, we deal with finite interpretations, also models are finite.
Given a trace signature, we next define a trace theory Γ. The intuition is that the models of

Γ are such that Seq is a predicate used to model a finite sequence indexed from 0 to some n, of
activities with non-decreasing (integer) timestamps—we call the indices of the sequence events

(as they uniquely identify an activity together with its attribute values and timestamp); AttV is a
(possibly partial) functional relation mapping events and attribute names into objects.

Formally, Γ is the theory including the following sentences:

• Seq is a non-empty indexed sequence of activities and non-decreasing timestamps:
– indexes and timestamps are integers: ∀i,a, t .Seq(i,a, t ) → N (i ) ∧ N (t ).
– Seq is non-empty and starts with index 0: ∃a, t .Seq(0,a, t ).
– Seq is indexed from 0 to some final index i:
∃i,a, t .Seq(i,a, t )∧
(¬∃i ′,a′, t ′.i ′ > i ∧ Seq(i ′,a′, t ′))∧ (i is the last index of Seq)
(∀i ′.0 < i ′ < i → ∃a, t .Seq(i ′,a, t )) (Seq is indexed from 0 to i).

– timestamps are non-decreasing:
∀i,a, t ,a′, t ′.(Seq(i,a, t ) ∧ Seq(i + 1,a′, t ′)) → t ′ ≥ t .

• AttV is a functional relation, mapping events and attribute names (which cannot be integers)
into objects:
– ∀i,n,v .AttV (i,n,v ) →

¬N (n)∧ (attribute names cannot be integers)
¬∃v ′.v � v ′ ∧ AttV (i,n,v ′) (AttV is functional, i.e., given an event i and an attribute

name n assigns at most one value v to n).

It is easy to see that every model ι of the theory above corresponds to a trace τι = e1 · · · en . In
particular, Seq represents the sequence of events, each represented by its position in the sequence
and its associated activity and timestamp, and AttV is the assignment of values to the relevant
attributes at each event. In detail, τι can be obtained by assigning ei = a(t ,att1 = v1, . . . ,attni =
vni ), for a, t , and all attj andvj such that 〈i,a, t〉 ∈ Seqι and 〈i,attj ,vj 〉 ∈ AttV ι . Similarly, one can
see that the vice versa also holds, i.e., from every trace τ , a model ιτ of Γ can be obtained.

Example 3.1. Consider the trace τ1 = a1 (t = 2, v = a) a2 (t = 5, w = b, y = d) a3 (t = 9, s =
c) a3 (t = 20, s = d), which represents the sequence of events including activity a1 with times-
tamp 2 and attribute v assigned to value a, then activity a2 with timestamp 5 and attributes w and
y respectively assigned to values b and d, and so on. Trace τ1 is captured by the following inter-
pretation ιτ1 of the trace signature σ (for brevity, we omit the interpretation of functions + and −
and relational operators but these can be easily obtained as their restriction to N ιτ1 ):

• Δ = C = {0, 1, 2, 3, 5, 9, 20} ∪ {a1, a2, a3, v, w, y, s, a, b, c, d};
• N ιτ1 = {0, 1, 2, 3, 5, 9, 20};
• Seqιτ1 = {〈0, a1, 2〉, 〈1, a2, 5〉, 〈2, a3, 9〉, 〈3, a3, 20〉};
• AttV ιτ1 = {〈0, v, a〉, 〈1, w, b〉, 〈1, y, d〉, 〈2, s, c〉, 〈3, s, d〉}.

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 4, Article 75. Publication date: August 2023.



Data-Aware Declarative Process Mining with SAT 75:9

Based on the correspondence above, in this article we refer to a trace as a model of the trace
theory Γ. As already mentioned, by the definition of Γ, traces can only be finite.

3.2 MP-Declare

We are interested in capturing formal properties of traces to express and solve typical problems
from Declarative Process Mining. In general, our approach can deal with any property expressed
as a FO formula over the (possibly extended) signature σ . However, in Process Mining, there are
a number of patterns that typically occur. In fact, these are so common that the Process Mining
community has devised a specific language, MP-Declare [10], for this purpose, which includes a
number of parametric formulas called templates. We can formally prove that MP-Declare is cap-
tured by FO in our framework (this is a rather simple exercise), so by being able to solve problems
stated in FO, we can also solve problems for MP-Declare. In this section, we show some typical
templates, together with their translation in FOL. Their formal semantics, fully detailed in [10],
can be obtained directly from the FOL translation.
For a FOL formula φ, we write f ree (φ) to denote the set of φ’s free variables. By a slight abuse

of notation, we consider a vector �x also as a set, namely, the set including all the components of �x .
We report below some typical MP-Declare constraints, together with an informal description.

Existence. The Existence constraint states the occurrence, in a trace, of some event containing
activity A and satisfying a property φa (activation condition), expressed in FOL. Importantly, φa
refers to a single event only. Constraints of this class have the following form:

Existence (A,φa ) = ∃i, t , �x .Seq(i,A, t ) ∧ φa ,
where f ree (φa ) ⊆ {i, t } ∪ �x and φa does not mention Seq but can mention AttV only in atoms of
the form AttV (i, ·, ·).
Example 3.2. The following Existence constraint requires the occurrence of at least one event

with activity RefundOrder and attribute amount having an integer value v equal to 10:

Existence (a,AttV (i, amount, 10)).

Absence. The Absence constraint is the opposite of Existence, and is thus simply defined as its
negation:

Existence (A,φa ) = ¬Absence (A,φa ).
Choice. This constraint generalizes Existence by stating the occurrence of an event containing

at least one of two activities A or B, and satisfying the activation condition φa :

Choice (A,B,φa ) = Existence (A,φa ) ∨ Existence (B,φa ).
Example 3.3. The following Choice constraint models the occurrence of a payment activity car-

ried out by debit or credit card, for an amount equal to 100:

Choice (PayDebitCard, PayCreditCard,AttV (i, amount, 100)).

ExclusiveChoice. This is a specialization of Choice, which requires that exactly one between
activities A and B occurs in some event that satisfies φa :

ExclusiveChoice (A,B,ϕ) = (Existence (A,φa ) ∧Absence (B,φa )) ∨ (Absence (A,φa ) ∧ Existence (B,φa )).
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Responded Existence. This constraint requires that if some event satisfying activation condition
φa occurs with activity A, then some event containing activity B and satisfying correlation condi-
tion φc occurs. Notice that Responded Existence does not impose any ordering constraint between
the event containing A and that containing B:

RespExistence (A,φa ,B,φc ) = ∀i, t .(∀�x .((Seq(i,A, t ) ∧ φa ) → (∃i ′, t ′.(∃�x ′.Seq(i ′,B, t ′) ∧ φc )))),
where f ree (φa ) ⊆ {i, t } ∪ �x , f ree (φc ) ⊆ {i, t , i ′, t ′} ∪ �x ∪ �x ′, and φa and φc do not mention
Seq but can mention AttV only in atoms of the forms, respectively, AttV (i, ·, ·) and AttV (i, ·, ·) or
AttV (i ′, ·, ·).

Example 3.4. The following constraint requires that if a child x has booked a room in a hotel,
then also an adult x ′ responsible for x must have booked, no matter in which order:

RespExistence (Reserve,φa , Reserve,φc ), with

φa = AttV (i, age, child) ∧AttV (i, name,x ),

φc = AttV (i ′, age, adult) ∧AttV (i ′, name,x ′) ∧AttV (i ′, resp_for,x ).
Any trace stemming from the hotel reservation process that contains, e.g., the following two events
(t and t ′ stand for two arbitrary timestamps),

• Reserve (t , name = Alice, age = child, resp_for = none),
• Reserve (t ′, name = John, age = adult, resp_for = Alice),

satisfies the constraint, independently of the ordering of t and t ′ (or, equivalently of i and i ′).

Response. The Response template specializes Responded Existence by requiring that the event
containing B occurs after that containing A:

Response (A,φa ,B,φc ) = ∀i, t .(∀�x .((Seq(i,A, t ) ∧ φa ) → (∃i ′, t ′.i ′ > i ∧ (∃�x ′.Seq(i ′,B, t ′) ∧ φc )))),
where φa and φc are as above.

Example 3.5. Constraint Response (A,φa ,B,φc ), with φa and φc as in Example 3.4 requires that
the registration of a child be followed by that of an adult responsible for him/her, but not vice
versa. Thus, a trace containing the events of Example 3.4 with t ′ < t does not satisfy the constraint,
whereas one where t ′ > t does.

While the above list is non-exhaustive, we observe that all the constraints share a similar struc-
ture and none of them contains more than two free variables, i.e., template parameters. As a result,
modulo the specific formulasφa andφc (the activation and correlation conditions of each template),
the examples above can be easily adapted to the remaining Declare templates.

4 PROBLEMS

In previous sections, we have shown how traces and MP-Declare constraints can be formalized in
FOL. Now, we combine these two to provide a FOL formalization of the problems of our interest,
which can then be solved by resorting to techniques for (finite) FO reasoning, through compilation
into SAT. We stress that our framework is general enough to deal with all possible FOL constraints,
not only those obtained as translation of MP-Declare templates, which are sufficient to capture
typical problems from Declarative Process Mining. Nonetheless, for ease of exposition, in the rest
of the section we present examples of MP-Declare constraints only. Analogous considerations hold
for the experiments, which, while carried out on MP-Declare templates only, can be performed, in
general, on any set of FOL constraints.
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4.1 Generation of Event Logs

The Event Log Generation problem consists in finding a set, of desired cardinality, of traces that
satisfy a sentence φ over σ . Phrased in our framework, the problem amounts to finding a set of
models of formula φ ∧ΦΓ , where ΦΓ =

∧
ϕ ∈Γ ϕ is the conjunction of all the sentences occurring in

(trace theory) Γ.
Since φ is an arbitrary FOL formula and the problem of checking whether one such formula

admits any (even finite) model is undecidable [24], the desired set of traces is in general not com-
putable. However, if one fixes the maximum length of the traces and the interpretation domain
of ι, then it is immediate to see that the set is effectively computable, as the logic used essentially
reduces to propositional logic. This is the typical scenario in Process Mining.

Example 4.1. Consider a set containing the following two MP-Declare constraints:

• Existence (a, t > 3 ∧ ∀n,v .AttV (i,n,v ) → v � d) (there exists an event with activity a
occurring after time(stamp) 3, with all attributes assigned to a value other than d);
• Response (a,φa , b,φc ), with
– activation condition φa = t ≥ 1 ∧AttV (i, att1,v1),
– correlation condition φc = AttV (i ′, att2,v2) ∧v1 � v2
(every event with activity a that occurs at or after time 1 and with attribute att1 assigned
to some valuev1 is followed by an event with activity b and attribute att2 assigned to some
value v2 different from v1).

Assume that one needs to generate a set of traces of length at most, say, 10, satisfying such con-
straints. Moreover, assume that

• the set of available activities is A = {a1, . . . , a6};
• the set of attribute names of interest is AN = {v, w, y, s};
• the set of possible attribute values is AV = {a, b, c, d};
• we are interested in the time intervalT I = [0, 100], i.e., the timestamps can take values only
in this range.

Notice that, for ease of presentation, we are not expressing the fact that certain attribute names
can be associated with certain activities only or that some values can be used only as attribute
names or values. This class of constraints, however, can be easily expressed (and consequently
enforced) by introducing additional predicates and constraints (in the form of FOL formulas) on
top of Γ.

Considering the correspondence between models of Γ and traces, the log generation problem
consists in finding a number of distinct models with interpretation domain Δ = T I ∪A∪AN ∪AV .
Obviously, Δ being finite, all such models can be effectively computed (they are finite and finitely
many).
For instance, the following traces (i.e., models of Γ) satisfy the constraints of Example 4.1:

• trace of Example 3.1, i.e., τ1 = a1 (t = 2, v = a) a2 (t = 5, w = b, y = d) a3 (t = 9, s = c) a3 (t =
20, s = d);
• trace τ2 = a2 (t = 5, v = c, w = v)(notice that v is used as bothan attribute name and an
attribute value).

4.2 Conformance Checking

Conformance checking is the problem of checking whether all the traces τ in an event log L, satisfy
a set Φ = {φ1, . . . ,φn } of MP-Declare constraints (FOL sentences). It can be easily seen that, all
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traces being finite, the problem is decidable. Indeed, the problem essentially reduces to standard
(Boolean) query evaluation in databases [1], by seeing each trace in L, which is a FO interpretation
ι, as a database over the schema σ , and each sentence φ ∈ Φ as a Boolean query over it.

Example 4.2. Consider again the set of constraints of Example 4.1. The first constraint is satisfied
by a trace if it contains an event with timestamp t greater than 3, with activity a2, and such that the
value d is not assigned to any of its attributes. The second constraint requires that whenever an
event e occurswith timestamp greater than or equal to 1, with activity a1, andwith value a assigned
to attribute v, then an event e ′ occurs strictly later with activity a3 and such that attribute v at e
and attribute s at e ′ are assigned distinct values.
Consider again trace τ1 = a1 (t = 2, v = a) a2 (t = 5, w = b, y = d) a3 (t = 9, s = c) a3 (t = 20, s =

d) of Example 3.1. It can be easily seen that both constraints are satisfied by the corresponding
interpretation ιτ1 described in Example 3.1.

4.3 Query Checking

Query checking can be described as the problem of query answering [1] over traces. To formally
define this, we preliminarily need the notions of query and respective answer. A query is a FO
formula. If the formula is a sentence, it is called a Boolean query. Intuitively, given an interpretation
ι = 〈Δ, ·ι〉 and a query φ over the same signature σ , the answer to φ over interpretation ι, denoted
φι , is the set of assignments to the free variables (the placeholders) of φ that make ι satisfy φ.
Formally, φι is defined by induction as follows.
Let v1, . . . ,vn be the free variables of a query φ, sorted according to some (arbitrary) order.

Then, the answer to φ (over ι) is the relation φι ⊆ Δn s.t. 〈a1, . . . ,an〉 ∈ φι iff for any assignment ν
s.t. ν (vi ) = ai , it is the case that ι,ν |= φ.
TheQuery Checking problem consists in determiningφι . Notice that if the interpretation domain

Δ is infinite, then φι cannot be computed in general, while it is solvable if Δ is finite. Again, the
latter is the setting of interest in Process Mining.

Example 4.3. Consider once again trace τ1 from Example 3.1: τ1 = a1 (t = 2, v = a) a2 (t = 5, w =
b, y = d) a3 (t = 9, s = c) a3 (t = 20, s = d). Assume we are interested in all the pairs of events
involved in the satisfaction of a response constraint. These are the activities ?x and ?y (leading ?
denotes query variables) such that the following formula holds (with φa and φc generic activation
and correlation conditions):

φ = Response (?x ,φa , ?y,φc ) = ∀i, t .(∀?x .((Seq(i, ?x , t ) ∧ φa ) →

(∃i ′, t ′.i ′ ≥ i ∧ (∃?y.Seq(i ′, ?y, t ′) ∧ φc ))))
Notice that the formula φ defined above has two free variables, ?x and ?y. Thus, any answer

φι is a relation φι ⊆ Δ2. Specifically, the relation contains all those pairs of activities a1 and a2
that make φ true, once used to replace ?x and ?y. For instance, if φa and φc are both true , then
φιτ1 = {〈a1, a2〉, 〈a1, a3〉, 〈a2, a3〉, 〈a3, a3〉}.

If φa and φc are as in Example 4.1, we have φιτ1 = {〈a1, a3〉, 〈a2, a1〉, 〈a2, a2〉, 〈a2, a3〉,
〈a3, a1〉, 〈a3, a2〉, 〈a3, a3〉}. The counter-intuitive answer to this query, i.e., the fact that some pairs
contain activities in reversed order with respect to that in which they appear in the trace, is due to
the fact that whenever φa does not hold, as a consequence of the implication, φ trivially evaluates
to true, no matter what activity is assigned to ?y. It is demanded to the designer of the query to
take care of this aspect.
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5 ALLOY FOR DECLARATIVE PROCESS MINING

All problems presented in the previous section can be cast and solved into as many reasoning tasks
in FOL (these can be ultimately regarded as problems typical of databases). Solution is possible
by finiteness of the interpretation domain. As described above, solving these problems requires in
practice either constructing a set of models or building a relation that satisfies the input constraints,
which can be done by reduction to SAT. To this end, we resort to the tool Alloy [32], which is
specifically designed for this purpose.
Alloy has been described in some detail in Section 1 (and Figure 1). For convenience, we remind

one here that it is a tool for the construction of FOL models over finite interpretation domains,
which takes in input a FO theory and an interpretation domain (in fact, a bound on the size of
the interpretation domain) and returns, if any, a model of the input theory. To do so, the tool
compiles the problem into SAT, using propositions to represent FO atoms built from predicate
symbols and the finitely many objects in the interpretation domain. We are not interested here
in the compilation step, but in (i) how we can cast our problems into that of finding a model for
a FO theory; and (ii) how effective the (SAT-based) solution approach of Alloy is in solving the
problems of our interest. In this section, we discuss the former point while, in the section about
experiments, we deal with the latter.

5.1 Generation of Event Logs

Generation of event logs is possibly the simplest problem Alloy can solve. We simply take a trace
theory Γ and the conjunction of the constraints to satisfy, say φ, and ask Alloy to search for the
models of Γ ∪ {φ}, for a given (finite) Δ. Observe that, if needed, we can add, on top of the input
theory, additional constraints, as long as these are consistent with Γ ∪ {φ}. For instance, we may
require that the set of attribute names be restricted to a certain desired set:

∀i,a,v .AttV (i,a,v ) → a = v ∨ a = w ∨ a = y ∨ a = s,

analogously for attribute values:

∀i,a,v .AttV (i,a,v ) → v = a ∨v = b ∨v = c ∨v = d,

or we may even require that certain attributes take only specific values:

∀i,v .AttV (i, v,v ) → v = a ∨v = d.

To obtain many traces, we ask Alloy once it has returned a model, to build one more, until it
has produced as many as needed or no more are available. We can incrementally increase the size
of the interpretation domain to obtain additional traces.

5.2 Conformance Checking

To solve conformance checking in Alloy, we proceed as follows. For every trace τ in the input
set L, we write a theory Γτ which admits, for a suitable fixed interpretation domain Δ, a single
model ιτ of Γ, capturing τ . Then, we add the following sentence to Γτ , with R a 0-ary relation (i.e.,
a proposition):

ϕ � R ↔
∧

φ ∈Φ
φ,

where Φ is the set of input formulas to be checked. Then, we run Alloy on the resulting theory, i.e.,
Γτ ∪ {ϕ}, and the interpretation domain Δ, concluding that τ satisfies the input specification Φ iff
the theory admits a model where R is true (by construction, if such a model exists is unique).
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Example 5.1. As an example, consider the constraints from Example 4.1:

Φ = {Existence (a, t > 3 ∧ ∀n,v .AttV (i,n,v ) → v � d),Response (a,φa , b,φc )},
where

• φa = t ≥ 1 ∧AttV (i, att1,v1), and
• correlation condition φc = AttV (i ′, att2,v2) ∧v1 � v2

are, respectively, the activation and correlation condition of Response . Consider also the trace of
Example 3.1:

τ1 = a1 (t = 2, v = a) a2 (t = 5, w = b, y = d) a3 (t = 9, s = c) a3 (t = 20, s = d).

The theory Γτ1 includes the following sentences:

• Seq(0, a1, 2) ∧ Seq(1, a2, 5) ∧ Seq(2, a3, 9) ∧ Seq(3, a3, 20).
• AttV (0, v, a) ∧AttV (1, w, b) ∧AttV (1, y, d) ∧AttV (2, s, c) ∧AttV (3, s, d).
• N (0) ∧ N (1) ∧ N (2) ∧ N (3) ∧ N (5) ∧ N (9) ∧ N (20).
• ∀i,a, t .Seq(i,a, t ) → (i = 0∧a = a1 ∧ t = 2) ∨ (i = 1∧a = a2 ∧ t = 5) ∨ (i = 2∧a = a3 ∧ t =
9) ∨ (i = 3 ∧ a = a3 ∧ t = 20).
• ∀i,n,v .AttV (i,n,v ) → AttV (i = 0,n = v,v = a) ∨ AttV (i = 1,n = w,v = b) ∨ AttV (i =
1,n = y,vd) ∨AttV (i = 2,n = s,v = c) ∨AttV (i = 3,n = s,v = d).
• ∀i, .N (i ) → N (0) ∨ N (1) ∨ N (2) ∨ N (3) ∨ N (5) ∨ N (9) ∨ N (20).

Observe that, for fixed Δ = C = {0, 1, 2, 3, 5, 9, 20, a1, a2, a3, v, w, y, s, a, b, c, d}, the only model of
Γτ1 (which represents τ1) is also one of Γ.
We then define ϕ = Existence(a2,φ) ∧ Response(a1,φa , a2,φc ), for φ = t > 3 ∧

∀n,v .AttV (i,n,v ), and φa and φc as above.
Then, using Alloy, we search for a model of Γτ1 ∪ {ϕ}, providing Δ as input. In the case at hand,

the returned (unique) model will have R true, indicating that τ satisfies Φ.

5.3 Query Checking

For query checking, we proceed in a way similar to that of conformance checking, which is, in
fact, a special case of query checking with a Boolean query.
Given a trace τ ∈ L, we produce the associated theory Γτ , which admits a unique model, as

explained in Section 5.2. Then, given the query φ (�x ) (with free variables �x ), we add

• a new predicate symbol Ans with arity |�x | to σ , then
• the following sentence to Γτ :

∀�x .Ans (�x ) ↔ φ (�x ).

As a result, the (unique) model of the resulting theory Γτ ∪ {φ} coincides with that of Γτ but ad-
ditionally includes relation Ans , which, by the above definition, contains all and only the tuples
occurring in φι , for ι the unique model of Γτ . By feeding Alloy with the theory Γτ ∪ {φ} and the
interpretation domain associated with τ , we can easily answer the query.

Example 5.2. For an example of query checking, consider the problem defined in Example 4.3,
where the query

φ = ∀i, t .(∀�x .((Seq(i, ?x , t ) ∧ φa ) →
(∃i ′, t ′.i ′ ≥ i ∧ (∃�x ′.Seq(i ′, ?y, t ′) ∧ φc ))))

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 4, Article 75. Publication date: August 2023.



Data-Aware Declarative Process Mining with SAT 75:15

is evaluated against the trace of Example 3.1: τ1 = a1 (t = 2, v = a), a2 (t = 5, w = b, y = d), a3 (t =
9, s = c), a3 (t = 20, s = d).
To answer the query, we simply feed Alloy with the theory obtained by joining Γτ1 shown in

Example 5.1 plus the sentence ∀�x .Ans (�x ) ↔ φ, and with the interpretation domain Δ associated
with τ , then ask Alloy to find a model of the input theory. The content of relationAns corresponds
to the sought answer to φ.

6 EXPERIMENTS

We implemented the framework described in this article in a tool available at https://github.com/
darksoullock/MPDeclareLogGenerator/. The efficiency of the tool was tested by performing sev-
eral experiments measuring the execution times needed for the tool to perform tasks of different
complexity. It is worth noticing that we do not use baselines. This is due to the fact that there are
no tools in the Process Mining literature that can be used as a baseline for the (data-aware) log
generation and query checking tasks. On the other hand, the tool presented in [10] for data-aware
conformance checking is generally more efficient than the SAT-based solution.7 Each measured
execution time was averaged over three runs. The experiments were conducted on a single core
of a 64-bit 2.2 GHz Intel Core i5-5200U processor with 16 GB of RAM. The SAT solver used was
SAT4J.
In order to assess the performance of the log generation approach, we generated logs with dif-

ferent characteristics using different Declare models. In a first set of experiments, we sampled the
generation times that resulted by varying the following parameters: (i) the number of constraints
in the Declare model (5, 10, 15, and 20 constraints), (ii) the number of events per trace (5, 10, 15, 20,
25, 30, 40, and 50 events), and (iii) the number of traces in the log (100, 250, 500, 1,000, 2,500, 5,000,
and 10,000 traces). The number of activities in the Declare models is fixed to 10. The constraints
employed are all of type response. The constraints are considered without data conditions, with
activation conditions, and with activation and correlation conditions. The results of our experi-
mentation are summarized in Tables 1–7.
When using a Declare model including constraints without data conditions, in the worst case,

namely, to generate a log of 10, 000 traces of length 50 from a model containing 20 constraints, the
execution time is slightly above 2 minutes. When using constraints with activation conditions, the
execution time in the worst case is of around 4.5 minutes. In the case of constraints with activation
and correlation conditions, the execution time in the worst case is of 5.5 minutes. In all the tested
cases, the peak of the RAM consumption is around 400 MB.
We also tested the trend of the execution times when varying the alphabet size (5, 10, 15, and

20 activities) of the Declare models (without data conditions). The number of constraints in these
experiments is fixed to 20. As expected, for increasing alphabet sizes, the execution times increase.
In the worst case, namely, to generate a log of 10,000 traces of length 50 from a model containing
20 activities, the execution time is of around 6 minutes.
Finally, we executed a set of experiments to test the performance of query checking.8 We sam-

pled the query times by varying the following parameters: (i) the type of query, (ii) the number
of events in the input trace (20, 25, 30, 40, and 50 events), and (iii) the alphabet of possible activ-
ities (5, 10, 15, and 20 activities). The queries cover all the standard Declare constraints and are

7As mentioned in the Introduction, the disadvantage of this solution is that it requires one to implement a dedicated

algorithm for any rule that needs to be checked (only the algorithms implementing the semantics of the Declare set of

rules are publicly available).
8We did not assess the conformance checking tool explicitly since, as already mentioned, conformance checking is a special

case of query checking.
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Table 1. Time (in Seconds) Required for Generating Logs of Different Sizes Containing Traces of Different

Lengths from Declare Models of Increasing Sizes (without Data Conditions)

Trace length
→

5 10 15 20 25 30 40 50

Log Size ↓ 5 constraints

100 0.21 0.31 0.51 0.66 1.11 1.82 3.88 7.47
250 0.52 0.89 1.02 1.32 1.8 2.61 4.93 8.82
500 0.89 1.36 2.11 2.4 3.54 4.3 7.34 11.31
1,000 1.77 2.61 3.79 4.54 5.7 6.95 11.15 17.46
2,500 4.43 7.09 8.83 11.15 14.28 17.19 24.2 31.18
5,000 9.98 13.1 17.46 22.1 27.95 32.6 45.13 58.96
10,000 19.61 26.35 34.69 46.36 53.87 63.98 83.99 112.69

Log Size ↓ 10 constraints

100 0.21 0.35 0.51 0.97 1.46 2.34 6.01 13.62
250 0.43 0.71 1.03 1.54 2.26 3.41 8.21 15.25
500 0.88 1.38 1.97 2.59 3.6 5.09 9.48 17.62
1,000 1.85 3.19 3.8 4.94 6.31 7.94 13.5 22.94
2,500 4.92 6.81 9.74 11.34 13.9 17.18 25.95 38.84
5,000 9.23 13.03 17.18 22.15 28.68 32.1 46.75 63.85
10,000 17.55 26.63 35.47 44.37 55.22 63.3 87.52 119.22

Log Size ↓ 15 constraints

100 0.2 0.47 0.59 1.02 1.83 3.31 8.85 19.74
250 0.5 0.75 1.1 1.68 2.58 4.15 10.09 20.68
500 0.93 1.39 1.92 2.79 3.98 6.54 12.15 23.46
1,000 1.81 2.75 3.75 5.01 6.62 9.46 16.22 28.48
2,500 4.48 6.74 9.74 11.51 14.74 19.02 29.03 43.77
5,000 9.29 13.92 17.27 22.53 29.47 33.63 48.68 69.4
10,000 15.63 27.05 35.21 45.05 56.48 66.56 95.61 121.65

Log Size ↓ 20 constraints

100 0.21 0.35 0.61 1.23 2.27 4.88 11.31 26.18
250 0.48 0.77 1.14 1.82 3.06 5.3 12.4 28.08
500 0.9 1.4 2.1 2.93 4.41 6.62 14.25 30.91
1,000 1.71 2.81 3.84 5.18 7.05 10.02 19.22 35.27
2,500 4.55 6.8 9.64 12.24 15.05 19.13 31.39 50.91
5,000 5.83 13.24 17.94 22.65 30.91 35.02 51.39 76.8
10,000 6.28 26.73 37.3 44.96 56.12 70.95 94.12 129.6

consideredwithout data conditions, with activation conditions, andwith activation and correlation
conditions. For all query types, the execution times range from a few milliseconds to 10 seconds.
The only exception is the case of the queries of type alternate that require, in the worst case, more
than 1.5 minutes.
To show what type of insights can be discovered with the presented approach, and to check

its scalability in real-life scenarios, we applied our tool to analyze a real-life event log containing
events of sepsis cases from a hospital. Sepsis is a life-threatening condition typically caused by an
infection. One case represents the pathway through the hospital. The events were recorded by the
ERP (Enterprise Resource Planning) system of the hospital. There are about 1,000 cases with
in total 15,000 events that were recorded for 16 different activities. Moreover, 39 data attributes
are recorded, e.g., the group responsible for the activity, the results of tests, and information from
checklists.
Starting from the description of the log provided by domain experts in [43], we have formulated

the following queries:

• Response[CRP,?Y]|?|
• Response[Leucocytes,?Y]|?|
• Response[LacticAcid,?Y]|?|

allowing us to understand what happens in a process execution when three different types of tests
(CRP, Leucocytes, and LacticAcid) are carried out with certain results. In the following paragraphs,
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Table 2. Time (in Seconds) Required for Generating Logs of Different Sizes Containing Traces of Different

Lengths from Declare Models of Increasing Sizes (with Activation Conditions)

Trace length
→

5 10 15 20 25 30 40 50

Log Size ↓ 5 constraints

100 0.36 0.63 0.84 1.18 1.72 2.32 5 8.71
250 0.88 1.42 2.08 3.12 3.54 4.45 7.59 11.97
500 1.76 2.56 3.91 4.84 6.17 7.93 12.46 17.73
1,000 3.12 5.08 7.43 9.66 12.14 15.02 21.2 28.96
2,500 8.71 12.88 18.86 24.05 29.28 34.94 49.52 65.41
5,000 15.44 25.65 36.43 48.75 60.29 69.55 95.09 121.26
10,000 31.15 52.96 75.54 97.55 119.47 145.05 197.75 246.47

Log Size ↓ 10 constraints

100 0.46 0.74 1.07 1.59 2.13 3.16 7.2 15.16
250 0.8 1.43 2.02 3.04 3.77 5.13 9.94 19.39
500 1.54 2.58 3.77 5.08 6.76 8.47 14.46 25.7
1,000 3.19 5.31 7.53 9.66 12.48 16.09 23.84 37.21
2,500 7.71 13.13 17.84 24.02 29.74 36.32 52.3 73.05
5,000 15.79 25.75 36.45 46.39 59.35 71.16 96.93 129.3
10,000 31.46 51.7 73.12 93.8 119.4 139.41 193.07 246.37

Log Size ↓ 15 constraints

100 0.35 0.6 1.32 1.54 2.63 4.15 9.35 21.02
250 0.81 1.41 2.04 2.93 4.25 6.73 12.33 24.65
500 1.61 2.66 3.83 5.18 7 10.47 16.81 30.47
1,000 3.14 5.54 7.98 9.89 12.83 16.2 26.5 41.96
2,500 7.77 13.73 18.14 23.53 30.44 38.16 54.03 77.14
5,000 16.09 25.37 36.14 47.86 60.98 72.27 100.7 135.21
10,000 33.11 52.62 72.07 95.28 119.78 139.93 198.73 254.18

Log Size ↓ 20 constraints

100 0.37 0.62 1.18 1.74 2.95 4.86 12.37 28.61
250 0.82 1.42 2.11 3.16 4.82 7.1 15.19 32.08
500 1.58 2.67 3.96 5.77 7.63 10.42 20.44 37.23
1,000 3.18 5.24 7.61 10.57 13.32 17.13 29.06 49.98
2,500 7.86 13.31 18.45 24.19 31.01 37.68 57.05 86.88
5,000 16.11 26.19 37.08 47.08 60.36 72.82 105.14 142.35
10,000 31.56 52.87 76.02 94.98 119.41 146.47 196.85 266.97

we summarize our main findings. The complete lists of discovered constraints are available at
https://github.com/darksoullock/MPDeclareLogGenerator/tree/master/data/2020.
Executing query Response[CRP,?Y]|?| on the real-life log under analysis took 5 minutes and 5

seconds. This query allows domain experts to carry on an analysis on what can happen when the
CRP test is conducted. From the results, we can see that two main classes of patients are available.
The ones of age between 19 and 41 for which the CRP varies between values 4.0 and 172.0 and
the ones of age between 42 and 66 for which the CRP varies between values 340.0 and 508.0.
For younger patients the diagnosis is E and for the older ones is GA. Both classes of patients are
required to carry on the same tests, e.g., Leucocytes and LacticAcid.

Executing query Response[Leucocytes,?Y]|?| took 4 minutes and 58 seconds. From the results
obtained with this query, we can see that, here, there there are three clusters of patients: the ones
of age between 19 and 41, the ones of age between 42 and 66, and the ones of age between 67 and
91. For all of them Leucocytes can vary between values −0.8 and 126.89 indicating that the result
of this type of test does not depend on the age of the patient. The diagnosis in this case can be
different for patients of the same age. However, for younger patients the diagnosis can be only E
or K , whereas for the older ones there is much more variety in terms of possible diagnosis.
Executing query Response[LacticAcid,?Y]|?| took 5 minutes and 19 seconds. Here, the patients

are not clustered anymore based on their age, but only based on the resulting values of the test.
When the resulting value of the test varies between −0.8 and 4.76, the possible actions eventu-
ally executed can be Release_B, Release_D, LacticAcid , IV _Liquid , CRP , ER_Triaдe , Leucocytes ,
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Table 3. Time (in Seconds) Required for Generating Logs of Different Sizes Containing Traces of Different

Lengths from Declare Models of Increasing Sizes (with Activation and Correlation Conditions)

Trace length
→

5 10 15 20 25 30 40 50

Log Size ↓ 5 constraints

100 0.35 0.63 0.92 1.31 1.93 2.67 5.54 9.71
250 0.87 1.47 2.04 2.82 3.79 4.99 9.41 13.98
500 1.75 2.79 4.13 5.65 7.67 9.2 13.68 21.42
1,000 3.27 5.36 7.83 10.15 13.49 16.94 24.33 35.55
2,500 7.86 13.85 19.04 26.1 32.38 39.54 55.88 76.03
5,000 16.15 27.79 38.31 51.29 64.12 78.4 111.16 146.22
10,000 33.08 56.65 77.12 100.42 127.92 160.07 223.49 290.7

Log Size ↓ 10 constraints

100 0.35 0.62 1.06 1.67 2.35 3.69 8.3 17.2
250 0.82 1.49 2.17 3.02 4.38 5.84 12.18 21.63
500 1.63 2.83 4.05 5.63 7.52 9.79 17.45 28.69
1,000 3.26 5.57 7.8 11.32 13.92 17.74 28.18 43.74
2,500 7.8 13.68 19.56 25.42 33.62 42.1 60.08 86.17
5,000 15.43 26.7 40.15 51.71 65.48 79.69 114.23 157.13
10,000 33.87 52.8 77.44 103.33 129.5 161.36 231.33 304.12

Log Size ↓ 15 constraints

100 0.37 0.77 1.21 1.81 2.99 4.87 11.27 24.77
250 0.83 1.46 2.22 3.38 4.87 7.28 14.7 29.65
500 1.62 3.01 4.24 5.8 7.98 10.99 20.59 35.45
1,000 3.21 5.52 7.93 11.56 14.41 18.58 31.16 50.4
2,500 8.2 13.98 19.57 26.03 34.15 43.6 63.62 93.14
5,000 15.84 27.5 38.38 52.57 67 81.95 118.94 165.5
10,000 32.87 54.58 77.29 104.44 130.79 164.6 231.09 313.23

Log Size ↓ 20 constraints

100 0.38 0.81 1.16 2.07 3.52 5.83 14.58 32.69
250 0.85 1.51 2.35 3.57 5.55 8.69 18.14 36.23
500 1.66 2.91 4.26 6.03 8.73 12.97 23.14 44.12
1,000 3.43 5.62 8.07 11.23 15.12 20.38 34.26 59.13
2,500 8 13.55 20.23 26.73 35.95 43.55 69.83 103.36
5,000 15.86 27.69 39.27 52.5 67.59 84.35 124.89 173.83
10,000 32.77 54.71 81.2 105.34 133.49 167.7 240.21 328.5

Release_A,Release_C ,Release_E, IV _Antibiotics , ER_SepsisT riaдe ,Admission_IC ,Admission_NC ,
and Return_ER. When the resulting value of the test varies between 4.76 and 10.33, the possible
actions eventually executed are the same except for Release_C and Release_E. When the resulting
value of the test varies between 10.33 and 15.89, the possible actions eventually executed can be
CRP , Leucocytes , and Release_B.

As for memory consumption, the following peak of RAM used was measured during the testing
of the three real-world queries:

• Response[CRP,?Y]|?|: 489 MB.
• Response[Leucocytes,?Y]|?|: 503 MB.
• Response[LacticAcid,?Y]|?|: 549 MB.

These results enable us to conclude that memory consumption seems not to be a problem for
enacting query checking, since the peak of used memory is far from saturating the RAM available
in the machine used for the experiments.

7 RELATEDWORK

Over the years, several propositional SAT-based encodings have been proposed to deal with var-
ious data mining challenges including itemset and sequence mining problems. Among the most
relevant and recent works on this matter, in [25, 26], a declarative framework for mining high
utility itemsets from transaction databases is presented. Specifically, the frequent itemset mining
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Table 4. Time (in Seconds) Required for Generating Logs of Different Sizes Containing Traces of Different

Lengths from Declare Models of Increasing Alphabet Sizes (without Data Conditions)

Trace length→ 20 25 30 40 50

Log Size ↓ 5 activities

100 1.37 1.84 2.82 6.09 13.15

250 2.71 3.61 4.82 8.86 16.89

500 5.05 6.78 8.24 13.12 22.48

1,000 9.54 12.03 15.42 23.27 33.47

2,500 23.87 30.49 36.51 50.71 70.16

5,000 47.6 58.15 70 99.83 130.38

10,000 97.52 119.34 147.08 194.98 248.05

Log Size ↓ 10 activities

100 1.97 3.13 4.96 12.22 28.59

250 3.31 4.95 7.13 15.47 32.45

500 5.84 7.99 11.05 21.08 38.32

1,000 11.71 14.23 18.23 30.59 50.66

2,500 25.86 34.34 40.34 60.47 90.27

5,000 51.91 64.92 80.63 110.93 157.23

10,000 106.41 129.41 157.58 214.94 289.57

Log Size ↓ 15 activities

100 2.46 3.37 5.62 14.03 29.46

250 3.86 5.63 8.15 16.32 33.84

500 6.67 10.8 12.1 22.59 40.58

1,000 12.58 16.09 20.31 33.6 54.18

2,500 28.96 37.09 46.5 66.5 97.41

5,000 58.51 72 87.61 122.5 166.1

10,000 115.44 142.93 176.29 237.81 311.67

Log Size ↓ 20 activities

100 2.65 4.17 6.24 15.67 33.1

250 4.6 6.7 9.29 22.96 37.86

500 7.7 10.84 14.1 25.33 46.57

1,000 13.95 18.13 24.71 37.47 62.34

2,500 33.92 42.07 53.74 77.21 111.13

5,000 68.72 84.84 102.84 145.04 196.41

10,000 137.77 171.12 203.24 280.06 363.04

problem is first reformulated as a propositional satisfiability one, and then solved employing a
SAT solver. Similarly, in [47], an efficient parallel SAT-based encoding for addressing the itemsets
mining problem in the presence of large input datasets is proposed. In [31], the authors show how
the community detection algorithms in social network analysis can be expressed as a Partial Max-
SAT optimization problem and solved using SAT tools. The authors show that the proposed solu-
tion outperforms existing state-of-the-art methods in detecting relevant communities. In [30], the
problem of mining strong negative association rules in pattern discovery is investigated through
a SAT-based approach that is able to address the challenge in an efficient way.
Other studies focus on SAT implementation for efficient constrained clustering [18] and pattern

discovery [46]. In particular, in [46] the authors present a constraint-based language coupled with
an approach driven by query answering to discover patterns within sequences of items. Queries
and built-in constraints of the language are encoded and solved using the SAT framework.
While the above approaches rely on a SAT-based reformulation of relevant data mining

problems, i.e., they investigate the existence of relations and patterns between data items, in
the process mining community some works exist that employ SAT-based solutions to perform
control-flow analysis on well-structured business processes. For example, in [33], a simulation-
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Table 5. Time (in Seconds) Required for ExecutingQueries (without Data Conditions) of Different Types on

Traces of Different Lengths and with Alphabet of Possible Activities of Different Sizes

Trace length→ 20 25 30 40 50

Alphabet Size ↓ Response[?X,?Y]

5 0.2 1 1.05 2.04 2.18
10 0.4 0.53 0.69 1.42 2.67
15 0.6 1.19 0.98 1.46 2.48
20 0.89 1.02 1.35 2.06 3.06

Alphabet Size ↓ Existence[?X]

5 0.1 0.15 0.17 0.23 0.35
10 0.1 0.14 0.16 0.24 0.34
15 0.11 0.16 0.21 0.3 0.43
20 0.14 0.18 0.23 0.4 0.55

Alphabet Size ↓ Absence[?X]

5 4 · 10−2 5 · 10−2 7 · 10−2 8 · 10−2 0.11
10 5 · 10−2 8 · 10−2 0.1 0.11 0.17
15 6 · 10−2 8 · 10−2 0.11 0.18 0.24
20 0.1 0.12 0.13 0.2 0.31

Alphabet Size ↓ RespondedExistence[?X,?Y]

5 0.12 0.14 0.16 0.19 0.2
10 0.3 0.35 0.48 0.54 0.62
15 0.7 0.85 1.1 1.2 1.47
20 1.32 1.63 1.8 2.37 2.67

Alphabet Size ↓ AlternateResponse[?X,?Y]

5 1.02 3.41 6.96 26.99 75.44
10 1.25 3.05 7.33 28.48 80.16
15 1.54 3.57 8.4 30.26 82.92
20 2.14 4.6 9.4 33.1 87.4

Alphabet Size ↓ ChainResponse[?X,?Y]

5 7 · 10−2 0.14 0.1 0.15 0.29
10 7 · 10−2 0.1 0.16 0.23 0.4
15 0.12 0.15 0.22 0.33 0.53
20 0.17 0.21 0.3 0.44 0.71

Alphabet Size ↓ Precedence[?X,?Y]

5 7 · 10−2 0.1 0.13 0.2 0.34
10 0.18 0.21 0.27 0.42 0.63
15 0.39 0.48 0.53 0.8 1.14
20 0.69 0.91 1.19 1.48 1.9

Alphabet Size ↓ AlternatePrecedence[?X,?Y]

5 0.94 2.68 6.21 25.66 77.58
10 1.25 2.93 6.97 27.03 81.8
15 1.47 3.38 8.07 28.32 86.71
20 2.1 4.26 8.53 30.39 90.94

Alphabet Size ↓ ChainPrecedence[?X,?Y]

5 6 · 10−2 0.1 0.1 0.16 0.37
10 8 · 10−2 0.14 0.19 0.33 0.51
15 0.15 0.2 0.19 0.32 0.53
20 0.18 0.21 0.26 0.54 0.71

Alphabet Size ↓ NotRespondedExistence[?X,?Y]

5 4 · 10−2 6 · 10−2 7 · 10−2 8 · 10−2 0.12
10 7 · 10−2 0.11 0.11 0.14 0.23
15 9 · 10−2 0.12 0.14 0.29 0.28
20 8 · 10−2 0.15 0.14 0.23 0.3

Alphabet Size ↓ NotResponse[?X,?Y]

5 8 · 10−2 0.15 0.25 0.62 1.44
10 0.1 0.17 0.3 0.76 1.64
15 0.43 0.41 0.65 1.18 1.91
20 0.84 0.85 0.91 1.4 2.41

Alphabet Size ↓ NotChainResponse[?X,?Y]

5 8 · 10−2 0.13 0.2 0.24 0.67
10 0.27 0.31 0.46 0.69 0.92
15 0.68 0.73 0.95 1.5 2.04
20 1.33 1.7 2 2.63 3.29

based look-ahead approach for multi-perspective declarative process models is introduced. This
approach transforms the problem of a context-aware process simulation into a SAT problem,
by translating a declarative multi-perspective process model and the current state of a process
execution into a specification of the logic language Alloy. Via a SAT solver, process trajectories
are generated that either satisfy or violate this specification. The simulated process trajectories
are used to derive consequences and effects of certain decisions at any time of process execution.
In [6], the authors show how important conformance artifacts like alignments, anti-alignments,
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Table 6. Time (in Seconds) Required for Executing Queries (with Activation Conditions) of Different Types

on Traces of Different Lengths and with Alphabet of Possible Activities of Different Sizes

Trace length→ 20 25 30 40 50

Alphabet Size ↓ Response[?X,?Y] |? |
5 0.12 0.18 0.28 0.85 1.88
10 0.27 0.38 0.54 1 1.91
15 0.46 0.62 0.91 1.56 2.75
20 0.86 1.2 1.31 2.49 3.54

Alphabet Size ↓ Existence[?X] |?
5 0.1 0.1 0.14 0.21 0.26
10 0.11 0.2 0.21 0.26 0.36
15 0.13 0.17 0.21 0.32 0.46
20 0.15 0.21 0.28 0.42 0.62

Alphabet Size ↓ Absence[?X] |?
5 5 · 10−2 7 · 10−2 7 · 10−2 9 · 10−2 0.15
10 9 · 10−2 0.11 0.14 0.15 0.21
15 0.13 0.16 0.19 0.21 0.3
20 0.16 0.22 0.23 0.28 0.36

Alphabet Size ↓ RespondedExistence[?X,?Y] |? |
5 0.12 0.2 0.2 0.24 0.3
10 0.36 0.56 0.74 0.82 0.92
15 0.81 1.07 1.21 1.89 2.27
20 1.41 2.49 2.19 3.14 3.94

Alphabet Size ↓ AlternateResponse[?X,?Y] |? |
5 1.03 2.78 6.79 26.16 75.04
10 1.22 3.15 8.51 28.62 78.96
15 1.62 3.8 8.42 31.07 83.15
20 2.23 4.89 9.71 34.06 89.32

Alphabet Size ↓ ChainResponse[?X,?Y] |? |
5 6 · 10−2 8 · 10−2 0.15 0.24 0.57
10 8 · 10−2 0.12 0.15 0.29 0.52
15 0.14 0.16 0.22 0.38 0.72
20 0.25 0.33 0.33 0.63 0.96

Alphabet Size ↓ Precedence[?X,?Y] |? |
5 8 · 10−2 0.16 0.14 0.3 0.56
10 0.2 0.26 0.32 0.56 0.77
15 0.45 0.52 0.63 0.97 1.27
20 0.83 1.02 1.16 1.58 2.18

Alphabet Size ↓ AlternatePrecedence[?X,?Y] |? |
5 0.94 2.58 6.36 26.37 78.67
10 1.11 3 6.92 26.99 83.15
15 1.57 3.74 8.4 28.71 86.37
20 2.21 4.74 9.21 31.29 90.13

Alphabet Size ↓ ChainPrecedence[?X,?Y] |? |
5 7 · 10−2 8 · 10−2 0.1 0.19 0.42
10 8 · 10−2 0.12 0.19 0.33 0.49
15 0.14 0.18 0.23 0.37 0.61
20 0.2 0.24 0.3 0.5 0.82

Alphabet Size ↓ NotRespondedExistence[?X,?Y] |? |
5 9 · 10−2 7 · 10−2 0.12 0.12 0.14
10 0.31 0.23 0.28 0.3 0.4
15 0.77 0.81 1.35 0.82 0.88
20 1.54 1.42 2.07 1.81 1.9

Alphabet Size ↓ NotResponse[?X,?Y] |? |
5 0.14 0.22 0.32 0.85 1.56
10 0.39 0.43 0.55 1.09 2
15 1.21 1.24 1.28 1.69 2.84
20 2.21 2.39 2.91 3.18 4.3

Alphabet Size ↓ NotChainResponse[?X,?Y] |? |
5 0.17 0.22 0.26 0.44 0.73
10 0.6 0.8 0.93 1.26 1.51
15 1.46 1.85 1.97 2.38 3.21
20 2.83 3.24 3.67 4.87 6.32

and multi-alignments can be computed by encoding the problem as a SAT instance, advocating
for a unified family of techniques that can compute conformance artifacts in the same way.
Following the research direction traced by [5], in our contribution we demonstrate that SAT can

be considered as a suitable solving technology for three relevant problems in Declarative Process
Mining, namely, log generation, conformance checking, and temporal query checking. In the litera-
ture, different extensions of Declare have been proposed. Some of these extensions have been used
as a basis to develop Process Mining algorithms. In [42, 61], the authors introduce Timed Declare,
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Table 7. Time (in Seconds) Required for Executing Queries (with Activation and Correlation Conditions) of

Different Types on Traces of Different Lengths and with Alphabet of Possible Activities of Different Sizes

Trace length→ 20 25 30 40 50

Alphabet Size ↓ Response[?X,?Y] |? |?
5 0.23 0.39 0.5 0.87 1.94
10 0.87 1.08 1.24 1.8 2.8
15 2.44 2.5 2.96 3.58 5.52
20 4.72 5.32 6.33 8.12 9.43

Alphabet Size ↓ RespondedExistence[?X,?Y] |? |?
5 0.25 0.3 0.33 0.42 0.51
10 1.04 1.31 1.39 1.84 2.09
15 2.8 3.28 3.23 4.18 4.96
20 4.52 5.1 5.97 7.26 8.44

Alphabet Size ↓ AlternateResponse[?X,?Y] |? |?
5 1.22 3.19 7.42 28.38 78.61
10 2.02 4.15 8.74 31.06 84.86
15 3.87 6.13 11.38 34.87 90.53
20 6.25 8.97 16.38 40.47 100.11

Alphabet Size ↓ ChainResponse[?X,?Y] |? |?
5 0.18 0.18 0.24 0.28 0.51
10 0.73 0.57 0.66 0.72 1
15 1.84 2.02 2.18 1.86 2.32
20 4.19 3.43 6.25 5.36 7.05

Alphabet Size ↓ Precedence[?X,?Y] |? |?
5 0.26 0.38 0.41 0.52 0.79
10 1.07 1.12 1.31 1.62 2.12
15 2.63 2.79 3.13 3.87 4.7
20 5.18 6.16 6.65 8.15 9.45

Alphabet Size ↓ AlternatePrecedence[?X,?Y] |? |?
5 1.18 3.46 8.53 42.95 91.01
10 2.02 3.94 8.22 29.95 88.06
15 3.56 5.95 10.71 33.66 93.54
20 6.47 9.09 14.12 37.93 101.58

Alphabet Size ↓ ChainPrecedence[?X,?Y] |? |?
5 0.18 0.15 0.27 0.28 0.4
10 0.68 0.5 0.59 0.75 1.01
15 1.91 2.07 2.01 1.68 2.28
20 3.74 3.44 5.21 4.35 4.86

Alphabet Size ↓ NotRespondedExistence[?X,?Y] |? |?
5 0.22 0.16 0.24 0.26 0.22
10 0.94 0.79 0.84 0.93 1.2
15 2.57 2.65 2.78 2.31 2.75
20 4.35 4.88 5.26 6.31 7.48

Alphabet Size ↓ NotResponse[?X,?Y] |? |?
5 0.27 0.32 0.46 0.87 1.66
10 1.07 1.05 1.27 1.72 2.88
15 3.02 3.5 3.58 3.96 5.13
20 4.17 5.05 5.58 7.38 10.34

Alphabet Size ↓ NotChainResponse[?X,?Y] |? |?
5 0.3 0.35 0.42 0.56 0.81
10 1.33 1.64 1.74 2.4 3
15 3.08 3.68 4.14 5.15 6.16
20 4.2 4.79 6.18 6.98 8.63

an extension of Declare whose semantics is based on a metric temporal logic that allows Declare
constraints to be enriched with temporal conditions on timestamps. In [38], such extension is used
for the discovery of Timed Declare constraints.
In the work proposed in [39], another extension of Declare has been proposed whose semantics

is defined by using a FO variant of LTL that allows Declare constraints to be enriched with
conditions on data. This semantics has been used in [7, 39] for the development of process
discovery algorithms that produce data-aware Declare constraints from logs. In [10], MP-Declare
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is introduced and a technique for conformance checking based on MP-Declare is presented.
Techniques for the discovery of MP-Declare constraints from event logs are presented in [35, 55].

Lines of research that are also related to the analysis of logs with declarative patterns are the
ones concerning sequential pattern mining and association rules. For example, Bose and van der
Aalst in [8, 9] employ sequential pattern mining to discover sequential patterns as tandem repeats,
maximal repeats, and alphabet repeats to be used as features for training a classifier. Similarly,
in [34], association rules are used to discover co-occurrence patterns in the context of deviant
classes in a healthcare scenario. In [12, 36], discriminative mining is used to discover discrim-
inative patterns, i.e., patterns that, although not necessarily very frequent, clearly discriminate
between deviant and non-deviant traces. A benchmark collecting all these works and evaluating
and comparing them in terms of different feature types and classifiers is presented in [48, 49].

Different types of patterns have also been combined together in [14–17]. In particular, in [14],
in order to avoid the redundant representation deriving from mixing different families of patterns,
the authors propose an ensemble learning approach in which multiple learners are trained encod-
ing the log according to different types of patterns. In [15], data attributes have also been taken
into account in the discovery phase as well as for training the classifier. Finally, in [16, 17], the
authors enhance their previous work [14] by proposing an alternative multi-learning approach
probabilistically combining various classification methods.
The difference between the above approach and the declarative process mining approaches is

in the type of patterns that are used for representing the log characteristics. While in association
rules and sequential pattern mining patterns are expressed as item sets and n-grams, in declarative
process mining they are expressed as temporal rules.

8 CONCLUSIONS

Process mining is the leading Big Data technology for business process analysis [57]. By extracting
knowledge from event logs in information systems, process mining builds a digital footprint of a
company’s real workflow enabling consultants and data scientists to concretely improve overall
company performance, revenues, and profitability. This article presents a framework that takes
advantage of AI techniques (bounded FO reasoning and SAT) to solve problems in Declarative
Process Mining, a research area particularly relevant for realizing intelligent Business Process
Management Systems to effectively enact knowledge-intensive processes [22, 44, 45].

We have shown how three specific Data-Aware Declarative Process Mining problems (namely,
log generation, conformance checking, and query checking) can be expressed as suitable FOL the-
ories and solved by compilation into SAT using Alloy. Such a solution approach yields two great
advantages. Firstly, since by using Alloy we can translate any instance of Log Generation, Con-
formance Checking, and Query Checking, into a SAT encoding, it follows that we can use any
SAT solver for such problems. This, in turn, allows for taking advantage of all possible future
improvements in the SAT technology for the problems of our interest. Secondly, our approach is
more general than existing ones. Indeed, previous approaches for Declarative Process Mining, and
more specifically for Log Generation, Conformance Checking, and Query Checking, are tailored
for MP-Declare. As we have shown in the article, we can rewrite all the MP-Declare templates as
formulas in FOL (interpreted over a finite interpretation domain), which Alloy then translates into
SAT; however, Alloy can translate any arbitrary FOL formula, not only those encodingMP-Declare
templates, thus, since MP-Declare is strictly less expressive than FOL, our approach can deal with
a strictly larger set of specifications.
The choice of adopting FOL theories and the SAT technology is motivated by the need to both

express the process specification at the correct abstraction level required to dealing with processes
in the presence of data and to perform automated reasoning over the specified process. The use
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of FOL and the SAT technology has allowed us to develop a very clean and simple-to-manage
framework for Declarative Process Mining based on relevant data manipulated by the process,
without compromising the efficiency and effectiveness of the proposed solution.

As future work, we would like to compare the performance of our tool using different SAT
solvers. We are currently working on an approach based on SAT for monitoring the compliance
of ongoing process executions with respect to a set of MP-Declare constraints.
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