
Silhouetting the Cost-Time Front:
Multi-objective Resource Optimization

in Business Processes

Orlenys López-Pintado1, Marlon Dumas1(B), Maksym Yerokhin1,
and Fabrizio Maria Maggi2

1 University of Tartu, Tartu, Estonia
{orlenys.lopez.pintado,marlon.dumas,maksym.yerokhin}@ut.ee

2 Free University of Bozen-Bolzano, Bolzano, Italy
maggi@inf.unibz.it

Abstract. The allocation of resources in a business process determines
the trade-off between cycle time and resource cost. A higher resource uti-
lization leads to lower cost and higher cycle time, while a lower resource
utilization leads to higher cost and lower waiting time. In this setting, this
paper presents a multi-objective optimization approach to compute a set
of Pareto-optimal resource allocations for a given process concerning cost
and cycle time. The approach heuristically searches through the space of
possible resource allocations using a simulation model to evaluate each
allocation. Given the high number of possible allocations, it is impera-
tive to prune the search space. Accordingly, the approach incorporates
a method that selectively perturbs a resource utilization to derive new
candidates that are likely to Pareto-dominate the already explored ones.
The perturbation method relies on two indicators: resource utilization
and resource impact, the latter being the contribution of a resource to
the cost or cycle time of the process. Additionally, the approach incorpo-
rates a ranking method to accelerate convergence by guiding the search
towards the resource allocations closer to the current Pareto front. The
perturbation and ranking methods are embedded into two search meta-
heuristics, namely hill-climbing and tabu-search. Experiments show that
the proposed approach explores fewer resource allocations to compute
Pareto fronts comparable to those produced by a well-known genetic
algorithm for multi-objective optimization, namely NSGA-II.

Keywords: Business process optimization · Resource allocation ·
Multi-objective optimization · Process simulation

1 Introduction

A business process brings together several activities performed by participants
(a.k.a. resources) that are typically divided into groups (a.k.a. resource pools)
according to their areas of responsibility. Each resource pool has a capacity,

c© The Author(s) 2021
A. Polyvyanyy et al. (Eds.): BPM Forum 2021, LNBIP 427, pp. 92–108, 2021.
https://doi.org/10.1007/978-3-030-85440-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85440-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-85440-9_6

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 93

determined by the number of resources in the pool. For example, in a loan
application handling process, there may be a resource pool grouping multiple
clerks responsible for all activities related to collecting and validating data, a
Credit Officer pool responsible for preparing initial loan decisions, and a Senior
Credit Officer pool for validating these decisions and handling exceptional cases.

The problem of resource allocation is that of determining how much capacity
(i.e., how many resources) to allocate to each resource pool so as to minimize or
maximize one or more performance measures. In this respect, for a given work-
load, the more there are resources in a pool, the less busy these resources are (low
resource utilization). Conversely, the less there are resources in a pool, the bus-
ier the resources are (high resource utilization). Higher resource utilization leads
to lower cost per instance (as resources are used to their full extent) and high
waiting times (due to resource contention). Conversely, lower resource utiliza-
tion leads to higher cost per instance and to lower waiting times [10]. Managers
need to balance these two ends of the spectrum, aiming for a resource allocation
that minimizes both the costs and the waiting times. Typically, no single solu-
tion exists that minimizes time and cost simultaneously. Instead, there is a set
of (incomparable) optimal solutions (a.k.a. Pareto front) so that no objective,
e.g., time and cost, can be improved without scarifying any other.

This paper presents an approach to compute a set of Pareto-optimal resource
allocations for a business process. The approach iteratively explores the space
of possible resource allocations and uses the simulation model to assess the cost
and cycle time of each explored allocation.1 The search space is traversed using
hill-climbing and tabu-search meta-heuristics. In each iteration, we estimate the
resource utilization and the overall resource performance (i.e., their impact on
the cost-time space), and we use these indicators to guide a perturbation method
that selects a subset of neighbors that are likely to Pareto-dominate solutions
in the current Pareto front, instead of exploring the entire neighborhood of
each allocation. The search strategy employs a ranking method to prioritize
new candidate allocations. Additionally, to cater for the fact that the output
of a simulation model is subject to stochastic variations, we propose a notion
of Pareto-dominance based on the median absolute deviation of the simulation
outputs. These mechanisms lead to two enhanced variants of hill-climbing plus
an enhanced variant of tabu-search. The paper reports an experimental evalua-
tion to assess the convergence, spread, and distribution of the discovered Pareto
fronts and the number of explored resource allocations, relative to a well-known
genetic algorithm for multi-objective optimization (NSGA-II) [8].

The rest of the paper is structured as follows. Section 2 discusses related
works. Section 3 introduces key concepts and meta-heuristics for multi-objective
optimization and concepts related to process simulation. Section 4 describes
the perturbation and ranking methods and the enhanced hill-climbing and

1 In the experiments, we use simulation models discovered from execution data, but the
approach can take as input a manually designed simulation model or any stochastic
model capable of estimating costs and cycle times for different resource allocations.

94 O. López-Pintado et al.

tabu-search variants. Then, Sect. 5 discusses the implementation and evaluation,
while Sect. 6 concludes the paper.

2 Related Work

Several previous studies have addressed the problem of resource allocation in
business processes. However, the bulk of these studies addressed resource allo-
cation as a single-objective optimization problem, i.e., either by optimizing one
performance measure or combining several into a linear function [13,16,19,23].

In [19], the authors proposed an evolutionary algorithm for finding the opti-
mal resource allocation of a business process. The framework’s input is a Colored
Petri Net, including all the parameters necessary for simulation, such as arrival
rate, processing times for each task, and branching probabilities for each decision
point. The paper optimizes the resource allocation regarding cycle time and cost,
combined into a single performance measure through a linear function. Similar
approaches using genetic algorithms and simulation models on single objective-
problems were presented in [9,14]. In the present paper, instead of combining
the time and the cost, we compute an entire Pareto front, which allows the user
to explore the available trade-offs between cycle time and resource cost.

The work presented in [16] addresses the optimization problem as an explo-
ration of the space of possible resource allocations. The approach considers the
resource utilization to define three strategies to discover the optimal resource
allocation while performing a reduced search of the solution candidates. The
authors addressed the resource allocation as a single-objective optimization
problem, i.e., minimizing the number of resources constrained by a specified
maximum waiting time. This paper adopts a different approach that considers
resource utilization in a multi-objective optimization setting to discover not a
single optimal but a set of optimal solutions.

In [11], the authors analyze the relationship between resource allocation and
various performance measures, including time. The authors use a grid-search
approach, i.e., an exhaustive exploration of all possible resource allocations given
a minimum and a maximum number of resources per pool. This approach can
be applied to explore the resource allocation space when the number of pools is
small. However, it does not scale up to larger search spaces.

The problem of design-time resource allocation tackled in the present paper is
related to the problem of runtime scheduling and runtime assignment of resources
to work items in a business process. The latter problems have been tackled
in various previous studies. For example, [18] and [22] consider the problem
of deciding how to schedule the work items generated by each execution of a
business process, taking into account that resources have availability constraints
(i.e., they are available at some times but not at others). Meanwhile, [12] tackles
the problem of deciding which specific resource should be assigned to a given
work item, given the characteristics of each resource. The contribution of the
present paper and those of the above papers are complementary. After selecting
a given resource allocation using the techniques proposed in this paper, it is

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 95

perfectly possible to optimize the runtime scheduling and assignment of resources
to work items using the techniques developed in the above papers.

The problem of resource allocation has also been studied outside the field of
business process optimization. For example, in [6], the authors present an algo-
rithm to discover Pareto fronts relying on ant colony optimization, assessing sev-
eral performance measures for a given resource allocation. From this latter study,
we share the idea of formulating the resource allocation as a multi-objective
problem but adapted to the meta-heuristics hill-climbing and tabu-search.

3 Overview of Multi-objective Optimization and Business
Process Simulation

3.1 Pareto Fronts and Meta-heuristic Optimization Algorithms

In an n-dimensional space, a solution B is Pareto dominated by another solution
A, if A is better than B for at least one objective, and A is at least as good as
B for the remaining objectives [2], e.g., B = (2, 5, 10) and C = (3, 8, 12) are
Pareto dominated by A = (1, 5, 10), under minimization constraints. The set
of solutions that are not dominated by any other are called Pareto optimal.
The set of non-dominated points are called the Pareto set, and the evaluation
of the objective functions on those points constitutes the Pareto front [2]. For
example, in the two-dimensional space cost-time associated with the execution of
a business process, the Pareto set contains the resource pools whose respective
cost-space evaluations constitute a Pareto front, i.e., the pairs cost-time are
Pareto-optimal. However, the problem of resource allocation is a well-known
NP-complete problem. Thus, as no efficient solution exists (i.e., exploring the
entire solution space is not possible in practical scenarios), some meta-heuristic
algorithms can be used to approximate the Pareto fronts.

Among many other classifications, existing meta-heuristic optimization algo-
rithms can be broadly classified into single-solution-based and population-based.
Single-solution algorithms keep one solution and search for better solutions at
each step through a perturbation function. Population-based algorithms keep a
population of solutions and build a new population at each step by perturb-
ing and combining solutions in the existing population. Indeed, single-solution
approaches are more efficient (i.e., they explore a lower number of solutions), but
population-based techniques lead to more optimal solutions at the cost of explor-
ing a higher number of solution candidates [4]. This paper focuses on enhancing
two of the most well-known single-solution-based meta-heuristics, named hill-
climbing and tabu-search. Besides, we use one population-based approach, the
genetic algorithm NSGA-II, as a baseline in our experiments.

Hill-climbing is an optimization technique that performs a local search around
a given point. At each iteration, the algorithm selects the best possible point
to move in the current point neighborhood. Therefore, the algorithm improves
the current solution on each iteration unless the entire neighborhood does not
contain better solutions. Classic applications of this algorithm assume a single

96 O. López-Pintado et al.

objective [4] (e.g., time, cost, or a linear combination of both). However, in [20],
the authors describe a modification of hill-climbing for multi-objective optimiza-
tion (i.e., to compute a Pareto front). To that end, not a single solution but
a Pareto front is stored. Thus, the new solution candidates are generated by
taking each point in the current front and generating its neighborhood. The
greedy nature of hill-climbing allows it to converge fast, but it may stop at a
local optimum.

The tabu-search algorithm is an extension of hill-climbing that avoids the
limitation of getting stuck in a local optimum. Unlike hill-climbing, tabu-search
stores the current best point, but it also accepts inferior solutions if no improve-
ment is found from the current best solution’s neighborhood. Thus, it accepts
Pareto-dominated solutions temporarily to visit new parts of the search space,
aiming to converge to the global optimum in subsequent iterations. The imple-
mentation includes a so-called tabu list, so solutions already visited or restricted
by any other rules are marked as tabu, thus not revisited (i.e., at least in a short-
term period) [4]. Although classical variants of the tabu-search algorithm assume
a single-objective, like hill-climbing, it can be extended to a multi-objective space
by considering a Pareto front instead of a single solution [20].

NSGA-II, the acronym of Non-dominated Sorting Genetic Algorithm, is a
well-known genetic algorithm designed explicitly for multi-objective optimiza-
tion [8]. The algorithm’s idea is to keep a population of points, some of which
are in the Pareto front, and others are not but well placed along with one of
the dimensions. At each iteration, the algorithm generates off-springs by sam-
pling from the neighborhood of the points in the current population. The best
new solutions are added to the population, and a subset of the existing solu-
tions (which are not Pareto optimal) are removed. To determine which solutions
to add or remove, the algorithm measures how far the solutions in the current
population are separated from each other.

3.2 Resource Pools, Event Logs and Business Process Simulation

A resource allocation is a sequence of resource pools R = {r1, ..., rn}, each
responsible for a subset of activities in a process. The functions rCount : R →
N+ and rCost : R → R+ retrieve, respectively, the number of resources and
cost (per time unit) of using one resource in a pool ri.

An event is a tuple e =< λ, r, γs, γc >, where λ is the label of one activity in
a business process (i.e., e is an instance of the activity λ), r ∈ R is the resource
who performed λ, and γs, γc are, respectively, the time-stamps corresponding to
the beginning and end of the event. A trace (a.k.a. process case) is a non-empty
sequence of events t =< e1, e2, ..., en >, and an event log eLog =< t1, t2, ..., tm >
is a non-empty sequence of traces corresponding to the execution of a process.

A simulation model consists of a process model M , e.g., written in the Busi-
ness Process Model and Notation (BPMN) notation, a set of resource pools R,
and a function activityResource : A → R that maps each activity a ∈ A in the
process model to a resource r ∈ R. Simulation models also include the mean

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 97

inter-arrival time of cases and probability distributions for arrival cases, activ-
ities’ processing times, and gateways’ branching [5]. Simulation models can be
executed using simulation engines like BIMP [1], which produces a set of possi-
ble execution traces used to perform quantitative analysis of business processes.
Henceforth, we will use the notation rpLog referring to event logs obtained from
real executions of business process and the notation smLog to point out simu-
lated event logs. In our approach, we consider the following functions computed
from an event log eLog:

– eventDuration(e =< λ, r, γs, γc >, eLog) represents the time-span, γc − γs,
between the beginning and end of event e, (a.k.a. processing time), plus the
time-span from the moment activity λ is enabled until the starting of the
corresponding event (a.k.a. waiting time),

– traceDuration(t, eLog) and procDuration(eLog) retrieve the time-span
between the beginning and end of trace t and the entire process, respectively,

– cT ime(R, eLog), i.e., cycle time, computes the average traceDuration of all
the traces t ∈ eLog, involving the resource pools in R,

– aCost(R, eLog) = procDuration(eLog) ∗ ∑
r∈R[rCost(r) ∗ rCount(r)] corre-

sponds to the cumulative costs of all the resources during the process execu-
tion. These costs consider not only the resources which performed each event
e ∈ eLog but all the resources allocated to the resource pools, which must be
available at any time of the execution,

– resourceUtilization(r, eLog) divides the time in which resources in pool r
were busy by procDuration(eLog), i.e., the percentage of time in which the
resources are busy.

4 Computing the Pareto-Optimal Resource Allocations

4.1 Initial Resource Allocation and Process Simulation

To discover the simulation model from an event log rpLog provided as input, we
use the tool named Simod [5]. It produces a process model in BPMN extended
with the probability distributions of each element/branch. Besides, it provides
the initial resource allocation R0 and the mapping function activityResource.
The incoming iterations produce only new resource allocations R1, R2, ..., Rn,
i.e., the control-flow of the BPMN model, and the mapping activityResource
remain unaltered. Henceforth, we will describe the steps of our approach based
on the corresponding resource allocation (a.k.a. solution candidate) Ri.

For each resource allocation Ri, the evaluation of the objective functions
cT ime and aCost requires to simulate the process, i.e., to assess the impact of the
current allocation on the execution. Due to the simulations’ stochastic nature,
running a single simulation per allocation may lead to inaccurate evaluations.
Thus, we run a number smCount ≥10 of simulations, keeping the results from
the simulated log smLog with median values of the function cT ime. Also, we
calculate the absolute median deviation (MAD) for both objective functions, i.e.,

98 O. López-Pintado et al.

MAD = median({|FM − f1|, ..., |FM − fn|}), where FM = median({f1, ..., fn})
with fi = f(R, smLogi),∀1 ≤ i ≤ n = smCount, and f ∈ {aCost, cT ime}.

The MAD serves to introduce a more strict Pareto dominance relation, con-
sidering the simulation results’ variability. In the classical Pareto dominance
relation, a resource allocation Ri dominates Rj (Ri < Rj) if Ri has a lower cycle
time and cost than Rj , i.e., f(Ri) ≤ f(Rj), f ∈ {cT ime, aCost}. In a more strict
dominance relation, Ri strongly dominates Rj (Ri << Rj) if f(Ri) ≤ f(Rj)
and |f(Ri) − f(Rj)| > min(MAD(f(Ri)),MAD(f(Rj))), f ∈ {aCost, cT ime}.
Thus, the cycle time and cost of Ri should be lower than Rj by a difference of at
least the minimum MAD between the two objective functions. In other words,
although Ri may dominate Rj , they are still close to discard Rj as a Pareto
optimal solution due to the simulations’ variance.

4.2 Perturbation Method: Generating Solution Candidates

Like any hill-climbing and tabu-search approaches, our proposal constructs the
Pareto front incrementally. At each iteration, instead of exploring the entire
neighborhood of the Pareto front like in traditional approaches2, we heuristically
select which resources might have a higher impact on the process execution.
Specifically, we introduce a perturbation that relies on two criteria to decide
which resource pool to improve, i.e., resource utilization and resource impact.

We hypothesize that a high resource utilization may increase the cycle times,
i.e., the resources are too busy, which might harm their overall performance.
Thus, increasing the number of resources might lead to reducing the overall cycle
time. Conversely, low resource utilization may affect the execution costs, i.e.,
there are some lazy resources with low efficiency, which might not be necessary.
Thus, decreasing the number of resources may lead to a decrease in the execution
costs without increasing the cycle times. Therefore, at each iteration, we select
the pools with higher/lower resource utilization and accordingly add, remove or
exchange resources to/from/between them.

Another issue to solve on the perturbation based on the resource utilization
is the number of resources to add or remove. Adding/removing one resource
leads to a shorter evolution step. Thus, it may increase the chances of finding
a new allocation improving the current one, but it may require a high number
of iterations to converge to the optimal. Conversely, adding/removing a higher
number of resources to reach some desire utilization ratio may converge faster
to the optimal allocation. Specifically, we use inverse proportion to estimate the
amount of resources to add or remove by the formula:

amount = (resourceUtilization(r, smLog) ∗ rCount(r)/dRu) − rCount(r) + 1

where dRu is a desired value for the resource utilization. In this paper, the pertur-
bation function adds/removes the corresponding amount to/from the resource
2 The neighborhood of a Pareto front might consist of 2mn solutions (i.e., straightfor-

wardly adding/removing one to/from each pool), where m and n are the size of the
Pareto front and the number of resource pools, respectively. The latest makes the
searching space too wide, especially when the number of resources is high.

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 99

Algorithm 1. Construction of the Pareto front
1: function AproximateParetoFront(rpLog)
2: (SM , R0) ← DiscoverSModel(rpLog)
3: smLog0 ← SimulateProcess(SM , R0)
4: PFront ← {< R0, aCost(R0, smLog0), cT ime(R0, smLog0) >}
5: PriorityQ ← ∅
6: Enqueue(PriorityQ, R0, dist(R0, PFront))
7: while Q not empty do
8: if StoppingCriteriaMet then
9: return PFront

10: SCandidates ← FindCandidates(Pop(PriorityQ))
11: for each Ri ∈ SCandidates do
12: smLogi ← SimulateProcess(SM , Ri)
13: if isNonDominated(Ri, smLogi, PFront) then
14: UpdateParetoFront(PFront, Ri, smLogi)
15: Enqueue(PriorityQ, Ri, dist(Ri, PFront))
16: else if IsTabuSearch then
17: Enqueue(PriorityQ, Ri, dist(Ri, PFront))

18: return PFront

pools with higher/lower utilization to reach an ideal utilization, e.g., between
0.7–0.8 as Gartner analysts suggest, or any values set by the process analysts
goals. The perturbation method also exchanges the minimum amount between
the pools with higher and lower utilization. However, although the calculated
amount introduces a higher step accelerating the convergence, it may also skip
solution paths in the middle. Thus, the perturbation method uses both values
unitary and the calculated amount to generate the next solution candidates.

To tackle other issues, i.e., not related to resource utilization, which may be
harming the process performance, we use a heuristic considering the resources’
impact. To that end, for each resource pool r, we calculate the aggregated costs
and cycle times of the activities assigned to r, i.e., from the mapping function
activityResource. Thus, the perturbation function will update the resource pools
not improved from the previous heuristic regarding utilization, whose aggregated
times and costs are above the average. Specifically, it increases the number of
resources on pools showing higher cycle times since adding more resources may
reduce the workload, thus decreasing the waiting times. Conversely, it reduces the
number of resources on pools with higher costs since fewer resources performing
the same activities more efficiently would reduce costs.

4.3 Ranking Method: Hill-Climbing and Tabu-Search Variants

Algorithm 1 sketches our proposal, which takes an event log as input. The steps
in lines 2–3 discover the simulation model, the initial resource allocation R0,
and runs the first simulation, as described in Sect. 4.1. The initial Pareto front
Front contains the initial resource allocation discovered from the event log and
the values aCost and cT ime retrieved from the initial simulation.

A key difference of our approach with traditional variants of hill-climbing and
tabu-search consists of sorting the solution candidates (i.e., resource allocations)
based on their Euclidean distance to a Pareto front PFront:

dist(Ri, PFront) = min
p∈PFront

‖f(Ri) − f(p)‖2 : f ∈ {aCost, cT ime}.

100 O. López-Pintado et al.

Thus, the algorithm stores the solution candidates in a priority queue, which is
initialized in lines 5–6.

At each iteration, the algorithm does not explore the neighborhood of each
allocation in the current Pareto front. Instead, it uses the heuristics described in
Sect. 4.2 to alter the solution candidate with the shortest Euclidean distance from
the Pareto front (line 10). Next, it simulates the process for each allocation Ri ∈
SCandidates retrieved by the perturbation method. Then, lines 11–17 verify,
after evaluating the objective functions aCost and cT ime, if the allocation Ri is
dominated (or not) by any allocation in the current Pareto front. Accordingly, a
solution candidate is added to the Pareto front and the priority queue depending
on the meta-heuristic search strategy as follows:

– HC-STRICT, or hill-climbing strict, considers the classical Pareto domi-
nance relation. The resource allocation Ri is added to the Pareto front if it
is Pareto-optimal, i.e., if the pair cost-time from Ri is not dominated by any
of the pairs cost-time in PFront. Similarly, Ri is only added to the priority
queue if it is Pareto-optimal. Also, each resource allocation dominated by Ri

is discarded. Note that after updating PFront, the distance dist to PFront
must be updated for each element in the priority queue.

– HC-FLEX, or hill-climbing flexible, considers a more strict Pareto domi-
nance relation defined by the MAD, which produces a larger Pareto front.
Thus, we relax the Pareto front definition to include classically dominated
elements, i.e., those separated by at most the median absolute deviation for
both objective functions aCost and cT ime. The steps to update the PFront
and the priority queue are the same as for HC − STRICT , but constructing
a relaxed Pareto front.

– TS-STRICT, or tabu-search strict, uses the classical Pareto dominance rela-
tion. However, unlike hill-climbing, tabu-search also adds to the priority queue
all the discarded, i.e., not Pareto-optimal resource allocations. So, when no
Pareto-optimal allocation exists in the queue, the tabu-search will generate
the subsequent solution candidates from the non-optimal resource allocation
with the shortest distance to the current Pareto front.

The algorithm stops (lines 7–8) if any of the following conditions hold: (1)
the queue is empty, (2) after exploring a specified maximum number of alloca-
tions, i.e., those generated by the perturbation function, (3) after producing a
maximum number of consecutive Pareto non-optimal allocations. Then, PFront
is returned as approximation of the optimal resource allocation.

5 Evaluation

In multi-objective optimization, measuring the quality of a Pareto front approx-
imation retrieved by an algorithm is not trivial. According to [2], a good approx-
imation must minimize the distance to the actual Pareto front (a.k.a. conver-
gence). Besides, a good Pareto front should consist of a highly diversified set
of points, which are also well distributed across the front (a.k.a. spread and

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 101

distribution). Accordingly, we designed an evaluation to answer the following
question: Q1 How good are the Pareto fronts discovered by our proposal with
respect to convergence, spread, and distribution? Secondly, as one of the goals of
this paper is reducing the searching space through heuristics, our evaluation also
answers the question: Q2 How many solutions (objective function evaluations)
do the algorithms need to explore to retrieve the Pareto front?

5.1 Implementation and Experimental Setup

To assess our proposal, we implemented the full approach presented in this paper
in Python 3.8. Also, we adapted the resource allocation problem to the tool
Pymoo [3], which implements the genetic algorithm NSGA-II. The source code
and the instructions to execute the three variants, i.e., HC-STRICT, HC-FLEX,
and TS-STRICT, and the NSGA-II algorithm, can be accessed from https://
github.com/orlenyslp/bpm-r-opt.

In our experiments, we run the four algorithms HC-STRICT, HC-FLEX, TS-
STRICT, and NSGA-II, taking the NSGA-II as a baseline to be compared with
the results obtained by our approach. In the case of our approach, we set the
maximum number of solutions to explore (i.e., function evaluations) to 10 000
and at most 800 (8%) consecutive Pareto non-optimal allocations. As for the
NSGA-II, we configured the input with the default values recommended in [3],
with a population size of 40 and a maximum of 250 generations (i.e., at most
10 000 function evaluations). For all the algorithms, we run 15 simulations per
allocation (using the BIMP engine [1]) to calculate the values of aCost and
cT ime. Also, to avoid giving any unfair advantages to an algorithm due to the
simulations’ stochastic nature, we memorized in files the simulation results. So,
we can assert that if two algorithms explore the same resource allocation, they
will get the same values of aCost and cT ime. Additionally, the memorization
reduces the number of simulations, thus the execution times, when multiple
algorithms explore common areas in the solution space.

As a starting point, we used simulation models derived from event logs
using the Simod simulation discovery tool [5]. We derived simulation models
from one synthetic event log and seven real-life ones. The synthetic log (namely
purchasing-example) is part of the academic material of the Fluxicon Disco tool3.
The first real-life log (production) is a log of a manufacturing process4. The sec-
ond one (consulta-data-mining) is an anonymized log of an academic recognition
process executed at a Colombian University, available in the Simod tool distri-
bution. The third real-life log is a subset of the BPIC2012 log5 – a log of a loan
application process from a Dutch financial institution. We focused on the sub-
set of this log consisting of activities that have both start and end timestamps.
Similarly, we used the equivalent subset of the BPIC20176, which is an updated

3 https://fluxicon.com/academic/material/.
4 https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399.
5 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
6 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://github.com/orlenyslp/bpm-r-opt
https://github.com/orlenyslp/bpm-r-opt
https://fluxicon.com/academic/material/
https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

102 O. López-Pintado et al.

version of the BPIC2012 log (extracted in 2017 instead of 2012). We extracted
the subsets of the BPIC2012 and BPIC2017 logs by following the recommenda-
tions provided by the winning teams of the BPIC 2017 challenge.7

Table 1. Characteristics of the business processes used in the experimentation.

Purchasing Consulta

Production Example Data-mining Insurance Call-centre bpi-12 bpi-17-filt bpi-17

Real traces 225 608 954 1182 3885 8616 8941 30 276

Simulation traces 550 1500 4000 4000 8000 18 000 18 000 24 000

Activities 23 23 18 11 8 8 9 9

Number of pools 7 6 4 2 3 4 2 3

Total resources 54 47 337 125 66 68 116 141

Simulation time 0.48 0.50 0.49 0.52 0.75 0.67 0.69 0.88

Table 1 gives descriptive statistics of the processes used in the experiments,
such as the number of traces in the event log, the number of activities, resource
pools, and the sum of the resources across the pools discovered by Simod. The
row simulation time shows the average execution times (in seconds) obtained by
running one simulation of the corresponding process using the BIMP engine. The
number of traces produced per simulation (number of simulated traces) was set
to at least two times the number of real traces to minimize stochastic variations.

Since data about salaries/costs of the resources involved in the process exe-
cution is missing in the event logs, we assigned each resource with the unitary
cost for the experiments. Thus, the total resource pool cost is determined by the
number of resources multiplied by the duration of the process execution, i.e.,
from the beginning of the first trace to the end of the last one.

5.2 Metrics and Experimental Results

As the actual Pareto front is unknown, we follow the approach presented in [7]
which creates a reference Pareto front PRef to compare the results retrieved
by many solvers. Specifically, PRef is the set containing the non-dominated
(i.e., Pareto-optimal) solutions from the entire search space explored by all the
runs of the four algorithms discussed in this paper. Henceforth, we will call
PRef the reference Pareto front (joint from many algorithms) and PAprox the
approximated (by one algorithm) Pareto front. Then, to answer the experimental
question Q1, we used four metrics:

– Hyperarea [21] (HA) measures convergence and distribution. So far, it is
considered the most relevant and widely used measure to compare algorithms
in the evolutionary community [2]. Hyperarea is the area in the objective
space dominated by a Pareto front delimited by a point (c, t) ∈ R

2, which we
set as the maximum cost and time among all the solutions explored. If PRef

7 https://www.win.tue.nl/bpi/doku.php?id=2017:challenge.

https://www.win.tue.nl/bpi/doku.php?id=2017:challenge

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 103

Table 2. Results of the performance metrics.

Insurance bpi-17-filt bpi-17 Call-centre bpi-12 Consulta Purchasing Production

H
y
p
e
ra

re
a HC-Strict 0.999715 0.999993 0.999388 0.979741 0.999999 0.939581 0.999966 0.984928

HC-Flex 0.999878 0.999993 0.999702 0.979741 1.0 0.970996 0.999993 0.999878

TS-Strict 0.999997 1.0 0.999989 0.999997 1.0 0.95116 0.999999 0.999878

NSGA-II 1.0 1.0 0.999776 0.975051 1.0 0.999964 0.999995 0.991984

H
a
u
sd

o
rff HC-Strict 792 368.4 21 283.4 767 578.4 333 931.8 67 756.9 114 721.2 12 093.5 60 122.4

HC-Flex 747 515.1 17 290.5 24 078.9 333 931.8 88 807.0 188 411.5 10 503.3 6102.8

TS-Strict 1 307 871.7 0.0 23 275.6 25 645.8 55 421.4 209 925.0 12 411.9 6102.8

NSGA-II 0.0 9033.2 42 653.2 426 892.2 105 021.1 11 404.6 93 709.6 775 721.6

D
e
lt
a
(Δ

) HC-Strict 1.247804 1.311345 1.314798 1.075864 1.128014 1.200819 1.471674 0.918048

HC-Flex 1.119086 1.27965 0.856219 1.075864 1.181983 0.887497 1.454444 0.585820

TS-Strict 1.117958 1.206904 0.876539 1.069856 1.197563 0.905387 1.496234 0.585820

NSGA-II 1.458937 1.244832 0.753908 1.166828 0.995971 1.223205 1.326563 1.102538

P
u
ri
ty

HC-Strict 0.888889 0.90625 0.833333 0.333333 0.692308 0.777778 0.695652 0.466667

HC-Flex 0.615385 0.911765 0.842105 0.333333 0.75 1.0 0.666667 0.923077

TS-Strict 1.0 1.0 1.0 0.973684 0.666667 1.0 0.954545 0.923077

NSGA-II 1.0 1.0 1.0 0.0625 1.0 1.0 0.848485 0.722222

is available, the hyperarea ratio is a real number, between 0 and 1, given by
HA(PAprox)/HA(PRef). A higher hyperarea ratio means a better PAprox,
being 1 the maximum possible ratio indicating that PAprox dominates the
same solution space as PRef .

– Averaged Hausdorff distance [17] measures convergence using the distances
between PAprox and PRef . Specifically, it gets the greatest distance from
each point in one set to the closest point in the other set, i.e., given by
max(min||pi, PRef ||2,min||pj , PAprox||2), ∀pi ∈ PAprox, pj ∈ PRef . A
lower Hausdorff distance means a better PAprox.

– Delta(Δ) [7,8] measures spread and distribution. It is given by the formula:

Δ =
d0 + dn +

∑n−1
i=1 |di − d′|

d0 + dn + (n − 1)d′

where di, 0 ≤ i ≤ n = |PAprox| is the Euclidean distance between consecutive
solutions, with d0 and dn being the Euclidean distances between the extreme
solutions in PRef and the extreme solutions in PAprox. Besides, d′ is the
average of those distances. A lower value of Δ means a better PAprox.

– Purity [7] is a cardinality measure used to compare Pareto fronts constructed
by different algorithms. It is given by |PAprox ∩ PRef |/|PAprox|. Thus, it
measures the ratio of solutions in PAprox included in PRef . A higher purity
means a better PAprox in terms of percentage of non-dominated solutions,
being 1 the maximum value possible.

Table 2 shows the results of the performance metrics achieved by the four algo-
rithms, highlighting the best score for each metric on each of the event logs.

The experiments show that, in most of the logs, the tabu-search TS-STRICT
scored the best results in each of the four metrics assessed, followed by the
genetic algorithmNSGA-II. As expected, the algorithmhill-climbingHC-STRICT
exposes the lowest performance among all the solvers, with its flexible variant HC-
FLEX, i.e., considering the MAD deviation, improving its results. However, both

104 O. López-Pintado et al.

variants of hill-climbing also constitute good initial approximations of the Pareto
front. They exhibit performances that are close in terms of the metric evaluations
to the NSGA-II and TS-STRICT. In all the cases, the algorithms scored hyper-
area ratios superior to 0.93 (being 1.0 the max possible), meaning that they dom-
inate at least 93% of the solution space dominated by the reference Pareto front.
Also, the Hausdorff distances and Δ spread do not evidence a bad performance of
any algorithm compared to the others. For example, although HC-STRICT never
obtains the best measurement, it achieves better scores than the NSGA-II algo-
rithm in 50% of the logs in both metrics. Finally, the purity rates show that both
variants of hill-climbing add fewer points to PRef compared to TS-STRICT and
NSGA-II. These results were expected as hill-climbing uses a more local search-
ing strategy. Thus, it explores a reduced number of allocations but still discovers
Pareto fronts with sound values of convergence, spread, and distribution according
to the Hyperarea, Hausdorff, and Δ metrics.

Fig. 1. Approximated Pareto Fronts from logs bpi-17, call-centre and production. The
times in cT ime (y-axis) and procDuration to compute aCost (x-axis) are in seconds.

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 105

Figure 1 compares the Pareto fronts PAprox discovered by each algorithm
from the event logs bpi-17, call-centre and production with the reference Pareto
front PRef .8 The points (aCost, cT ime) in blue are in PRef but not in PAprox,
the ones in green are in PRef and PAprox, while the ones in red are the points
in PAprox but not in PRef . The figure illustrates how the approximations
obtained by TS-STRICT and NSGA-II share more solutions with PRef , while
the solutions discovered by the hill-climbing variants span local regions of PRef .
Across all the experiments, the event log call-centre (in the middle) led to the
most disperse results. In this case, TS-STRICT found 37 of the 38 non-dominated
points in PRef , while NSGA-II, HC-STRICT, and HC-FLEX found different
sets containing only 2 of the points in PRef . However, those points excluded
from PRef were still close, dominating a high solution space region as the hyper-
area ratio shows.

To answer the research question Q2, we use data profiles [15] to assess how
well each algorithm performed in terms of number of evaluations of the objective
function (that require the calculation of aCost and cT ime). Specifically, we plot
the cumulative percentage of non-dominated solutions added in PAprox after a
given number of function evaluations.

Fig. 2. Pareto front growing ratio (y-axis) in terms of function evaluations (x-axis).

8 The Pareto fronts from the remaining event logs, and the full results obtained in the
experiments, can be accessed from the code repository.

106 O. López-Pintado et al.

Figure 2 illustrates the cumulative growing ratio of the Pareto fronts PAprox,
i.e., between 0 (no points) and 1 (all the points in PAprox), progressing with
the number of function evaluations. The figure sketches with the dotted lines
at which function evaluation each algorithm added the last point in PAprox.
As expected, hill-climbing achieves the best performance, carrying out a signif-
icantly lower number of function evaluations than the other solvers. The algo-
rithm NSGA-II shows the worst performance, followed by TS-STRICT. Unlike
the variants proposed in this paper that explore each resource allocation only
once, the NSGA-II algorithm may explore a resource allocation several times,
thus requiring multiple calculations of aCost and cT ime. Regarding the differ-
ent resource allocations explored, on average, the HC-STRICT traversed 361
allocations, HC-FLEX 1468, TS-STRICT 2982, and NSGA-II 4641.

The experimental evaluation evidenced that HC-STRICT, followed by HC-
FLEX, requires fewer function evaluations to construct a Pareto front with
acceptable accuracy. However, they also discover fewer non-dominated solutions
than TS-STRICT, which exhibits Pareto fronts with higher accuracy. Accord-
ingly, we can conclude that the hill-climbing variants provide a proper initial
approximation of the Pareto fronts so that the business analysts obtain a solu-
tion in shorter computational times. In contrast, the TS-STRICT (like NSGA-II)
provides more accurate and varied Pareto optimal allocations so that analysts
have a broader range of choices but at the cost of exploring more solutions.

6 Conclusion

This paper presented an optimization approach to compute a set of Pareto-
optimal resource allocations minimizing the cost and cycle time of a process. The
approach heuristically explores the search space of possible resource allocations
using a simulation model to evaluate each allocation. The approach incorporates
a perturbation method that selects solution candidates that are likely to Pareto-
dominate the already explored allocations based on two indicators: resource uti-
lization and resource impact. The approach also incorporates a ranking method
that sorts the resource allocations, exploring the closest one to the current Pareto
front so as to accelerate the convergence. The perturbation and ranking meth-
ods are embedded into two variants of the hill-climbing meta-heuristic, namely
HC-STRICT and HC-FLEX, and a variant of tabu-search, namely TS-STRICT.
In HC-FLEX, we relax the definition of Pareto-domination so as to prevent that
the algorithm is trapped too quickly into a local optimum due to stochastic
variations in the outputs of the simulation model.

The experimental evaluation shows that our approach requires fewer evalua-
tions of the objective functions to retrieve Pareto fronts of quality comparable to
those discovered by the NSGA-II algorithm. Moreover, with sufficient iterations,
the tabu-search approach leads to higher-quality Pareto fronts than NSGA-II.

A limitation of the current approach is that the exploration of the search
space is done in a sequential manner. An avenue for future work is to speed up
the approach by parallelizing the generation of solution candidates and their eval-
uation via simulation. Secondly, our proposal focuses on optimizing the number

Silhouetting the Cost-Time Front: Multi-objective Resource Optimization 107

of resources per pool, assuming that all resources in a pool have identical charac-
teristics. Another future work direction is to extend the approach to models with
differentiated resources (e.g., different resources have different performance) as
well as resources shared across pools or processes.

Acknowledgment. Work funded by European Research Council (PIX project).

References

1. Abel, M.: Lightning Fast Business Process Model Simulator. Master’s thesis, Uni-
versity of Tartu (2011)

2. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indi-
cators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021)

3. Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access
8, 89497–89509 (2020)

4. Boussäıd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf.
Sci. 237, 82–117 (2013)

5. Camargo, M., Dumas, M., González, O.: Automated discovery of business process
simulation models from event logs. Decis. Support Syst. 134, 113284 (2020)

6. Chaharsooghi, S.K., Kermani, A.H.M.: An effective ant colony optimization algo-
rithm (ACO) for multi-objective resource allocation problem (MORAP). Appl.
Math. Comput. 200(1), 167–177 (2008)

7. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for
multiobjective optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Djedović, A., Žunić, E., Avdagić, Z., Karabegović, A.: Optimization of business
processes by automatic reallocation of resources using the genetic algorithm. In:
IEEE BIHTEL 2016 Proceedings, pp. 1–7 (2016)

10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, 2nd edn. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-662-56509-4

11. Durán, F., Rocha, C., Salaün, G.: Analysis of resource allocation of BPMN pro-
cesses. In: ICSOC 2019 Proceedings, pp. 452–457 (2019)

12. Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based
resource allocation in business process management. Data Knowl. Eng. 70(1), 127–
145 (2011)

13. Huang, Z., Lu, X., Duan, H.: A task operation model for resource allocation opti-
mization in business process management. IEEE Trans. Syst. Man Cybern. Part
A 42(5), 1256–1270 (2012)

14. Lee, H., Kim, S.S.: Integration of process planning and scheduling using simulation
based genetic algorithms. Int. J. Adv. Manuf. Technol. 18(8), 586–590 (2001)

15. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms.
SIAM J. Optim. 20(1), 172–191 (2009)

16. Peters, S.P.F.: Analysis and Optimization of Resources in Business Processes. PhD
dissertation, Technische Universiteit Eindhoven (2021)

17. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged hausdorff
distance as a performance measure in evolutionary multiobjective optimization.
IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4

108 O. López-Pintado et al.

18. Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource
allocation constraints. Inf. Syst. 30(5), 399–422 (2005)

19. Si, Y., Chan, V., Dumas, M., Zhang, D.: A Petri nets based generic genetic algo-
rithm framework for resource optimization in business processes. Simul. Model.
Pract. Theory 86, 72–101 (2018)

20. Weise, T.: Global optimization algorithms-theory and application. Self-Published
Thomas Weise (2009)

21. Wu, J., Azarm, S.: Metrics for quality assessment of a multiobjective design opti-
mization solution set. J. Mech. Des. 123(1), 18–25 (2001)

22. Xu, J., Liu, C., Zhao, X., Yongchareon, S., Ding, Z.: Resource management for
business process scheduling in the presence of availability constraints. ACM Trans.
Manag. Inf. Syst. 7(3), 9:1–9:26 (2016)

23. Yu, Y., Pan, M., Li, X., Jiang, H.: Tabu search heuristics for workflow resource
allocation simulation optimization. Concurr. Comput. Pract. Exp. 23(16), 2020–
2033 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Silhouetting the Cost-Time Front: Multi-objective Resource Optimization in Business Processes
	1 Introduction
	2 Related Work
	3 Overview of Multi-objective Optimization and Business Process Simulation
	3.1 Pareto Fronts and Meta-heuristic Optimization Algorithms
	3.2 Resource Pools, Event Logs and Business Process Simulation

	4 Computing the Pareto-Optimal Resource Allocations
	4.1 Initial Resource Allocation and Process Simulation
	4.2 Perturbation Method: Generating Solution Candidates
	4.3 Ranking Method: Hill-Climbing and Tabu-Search Variants

	5 Evaluation
	5.1 Implementation and Experimental Setup
	5.2 Metrics and Experimental Results

	6 Conclusion
	References

