9 research outputs found

    Population genomics of the Viking world.

    Get PDF
    The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent

    Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by <it>Wolbachia</it>

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climatic oscillations are among the long-term factors shaping the molecular features of animals and plants and it is generally supposed that the rear edges (i.e., the low-latitude limits of distribution of any given specialised species) situated closer to glacial refugia are vital long-term stores of genetic diversity. In the present study, we compared the genetic structure of several populations of an endangered and obligate myrmecophilous butterfly (<it>Maculinea arion</it>) from two distinct and geographically distant parts of its European distribution (i.e., Italy and Poland), which fully represent the ecological and morphological variation occurring across the continent.</p> <p>Results</p> <p>We sequenced the COI mitochondrial DNA gene (the ‘barcoding gene’) and the EF-1α nuclear gene and found substantial genetic differentiation among <it>M. arion</it> Italian populations in both markers. Eleven mtDNA haplotypes were present in Italy. In contrast, almost no mtDNA polymorphisms was found in the Polish <it>M. arion</it> populations, where genetic differentiation at the nuclear gene was low to moderate. Interestingly, the within-population diversity levels in the EF-1α gene observed in Italy and in Poland were comparable. The genetic data did not support any subspecies divisions or any ecological specialisations. All of the populations studied were infected with a single strain of <it>Wolbachia</it> and our screening suggested 100% prevalence of the bacterium.</p> <p>Conclusions</p> <p>Differences in the genetic structure of <it>M. arion</it> observed in Italy and in Poland may be explained by the rear edge theory. Although we were not able to pinpoint any specific evolutionarily significant units, we suggest that the Italian peninsula should be considered as a region of special conservation concern and one that is important for maintaining the genetic diversity of <it>M. arion</it> in Europe. The observed pattern of mtDNA differentiation among the populations could not be explained by an endosymbiotic infection.</p

    Cryptic diversity of Italian bats and the role of the Apennine refugium in the phylogeography of the western Palaearctic

    Get PDF
    The Mediterranean Basin is typified by a high degree of species rarity and endemicity that reflects its position, geomorphology, and history. Although the composition and cryptic variation of the bat faunas from the Iberian and Balkan Peninsulas are relatively well studied, data from the Apennine Peninsula are still incomplete. This is a significant shortfall, given the presumed refugial role of this region in the context of Europe's Pleistocene phylogeography. It was thus our aim to supplement the phylogeographical information from the region, generating mitochondrial sequences and reviewing published data, with a focus on the dispersal and diversification patterns characterizing taxa with different life strategies. Site-specific lineages were ascertained, especially in the genera Myotis and Plecotus and amongst the pipistrelloid bats, representing speciose radiations. It was possible to observe disjunct ranges with patches isolated south of the Alps in several species, corresponding with evolution of elevated genetic distance. The genetic subdivision within the continuous Italian range into northern and southern lineages in several taxa indicated the possible past substructure of the refugium. Several shared lineages between the Apennine and Ibero-Maghrebian regions were observed, indicating connectivity between the Adriatic and Atlantic-Mediterranean refuges, and raising questions as to which region these clades originated from and what was the direction of faunal exchange between them. In contrast to Europe's other two main refugia, the Apennine Peninsula is a smaller region with simpler phylogeographical patterns. Nevertheless, our results support the idea that the region generated novel lineages. Whereas diversification in sedentary bats may have been driven through the generation of in situ adaptations, specialization, and niche differentiation, the emergence of species with a tramp strategy could have entailed the utilization of faunal drift and the taxon cycle

    Population genomics of the Viking world

    No full text
    The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent

    Author Correction: Population genomics of the Viking world

    No full text
    corecore