165 research outputs found

    CoRoT pictures transiting exoplanets

    Full text link
    The detection and characterization of exoplanets have made huge progresses since the first discoveries in the late nineties. In particular, the independent measurement of the mass and radius of planets, by combining the transit and radial-velociy techniques, allowed exploring their density and hence, their internal structure. With CoRoT (2007-2012), the pioneering CNES space-based mission in this investigation, about thirty new planets were characterized. CoRoT has enhanced the diversity of giant exoplanets and discovered the first telluric exoplanet. Following CoRoT, the NASA Kepler mission has extended our knowledge to small-size planets, multiple systems and planets orbiting binaries. Exploring these new worlds will continue with the NASA/TESS (2017) and ESA/PLATO (2024) missions.Comment: in Comptes Rendus de l'Academie des Sciences / Geoscienc

    An upper boundary in the mass-metallicity plane of exo-Neptunes

    Full text link
    With the progress of detection techniques, the number of low-mass and small-size exoplanets is increasing rapidly. However their characteristics and formation mechanisms are not yet fully understood. The metallicity of the host star is a critical parameter in such processes and can impact the occurence rate or physical properties of these planets. While a frequency-metallicity correlation has been found for giant planets, this is still an ongoing debate for their smaller counterparts. Using the published parameters of a sample of 157 exoplanets lighter than 40 Mearth, we explore the mass-metallicity space of Neptunes and Super-Earths. We show the existence of a maximal mass that increases with metallicity, that also depends on the period of these planets. This seems to favor in situ formation or alternatively a metallicity-driven migration mechanism. It also suggests that the frequency of Neptunes (between 10 and 40 Mearth) is, like giant planets, correlated with the host star metallicity, whereas no correlation is found for Super-Earths (<10 Mearth).Comment: Accepted in MNRAS, 11 pages, 5 figure

    Interior-atmosphere modelling to assess the observability of rocky planets with JWST

    Full text link
    Super-Earths present compositions dominated by refractory materials. However, there is a degeneracy in their interior structure between a planet with no atmosphere and a small Fe content, and a planet with a thin atmosphere and a higher core mass fraction. To break this degeneracy, atmospheric characterization observations are required. We present a self-consistent interior-atmosphere model to constrain the volatile mass fraction, surface pressure, and temperature of rocky planets with water and CO2 atmospheres. These parameters obtained in our analysis can then be used to predict observations in emission spectroscopy and photometry with JWST, which can determine the presence of an atmosphere, and if present, its composition. To obtain the bolometric emission and Bond albedo for an atmosphere in radiative-convective equilibrium, we present the k-uncorrelated approximation for fast computations within our retrieval on planetary mass, radius and host stellar abundances. For the generation of emission spectra, we use our k-correlated atmospheric model. An adaptive MCMC is used for an efficient sampling of the parameter space at low volatile mass fractions. We show how to use our modelling approach to predict observations with JWST for TRAPPIST-1 c and 55 Cancri e. TRAPPIST-1 c's most likely scenario is a bare surface, although the presence of an atmosphere cannot be ruled out. If the emission in the MIRI F1500 filter is 731 ppm or higher, there would be a water-rich atmosphere. For fluxes between 730 and 400 ppm, no atmosphere is present, while low emission fluxes (300 ppm) indicate a CO2-dominated atmosphere. In the case of 55 Cancri e, a combined spectrum with NIRCam and MIRI LRS may present high uncertainties at wavelengths between 3 and 3.7 ÎĽ\mum. However, this does not affect the identification of H2O and CO2 because they do not present spectral features in this wavelength range.Comment: 15 pages, 9 figures. Accepted for publication in A&

    PASTIS: Bayesian extrasolar planet validation. I. General framework, models, and performance

    Full text link
    A large fraction of the smallest transiting planet candidates discovered by the Kepler and CoRoT space missions cannot be confirmed by a dynamical measurement of the mass using currently available observing facilities. To establish their planetary nature, the concept of planet validation has been advanced. This technique compares the probability of the planetary hypothesis against that of all reasonably conceivable alternative false-positive (FP) hypotheses. The candidate is considered as validated if the posterior probability of the planetary hypothesis is sufficiently larger than the sum of the probabilities of all FP scenarios. In this paper, we present PASTIS, the Planet Analysis and Small Transit Investigation Software, a tool designed to perform a rigorous model comparison of the hypotheses involved in the problem of planet validation, and to fully exploit the information available in the candidate light curves. PASTIS self-consistently models the transit light curves and follow-up observations. Its object-oriented structure offers a large flexibility for defining the scenarios to be compared. The performance is explored using artificial transit light curves of planets and FPs with a realistic error distribution obtained from a Kepler light curve. We find that data support for the correct hypothesis is strong only when the signal is high enough (transit signal-to-noise ratio above 50 for the planet case) and remains inconclusive otherwise. PLATO shall provide transits with high enough signal-to-noise ratio, but to establish the true nature of the vast majority of Kepler and CoRoT transit candidates additional data or strong reliance on hypotheses priors is needed.Comment: Accepted for publication in MNRAS; 23 pages, 11 figure

    A small survey of the magnetic fields of planet-host stars

    Get PDF
    Using spectropolarimetry, we investigate the large-scale magnetic topologies of stars hosting close-in exoplanets. A small survey of ten stars has been done with the twin instruments TBL/NARVAL and CFHT/ESPaDOnS between 2006 and 2011. Each target consists of circular-polarization observations covering 7 to 22 days. For each of the 7 targets in which a magnetic field was detected, we reconstructed the magnetic field topology using Zeeman-Doppler imaging. Otherwise, a detection limit has been estimated. Three new epochs of observations of Tau Boo are presented, which confirm magnetic polarity reversal. We estimate that the cycle period is 2 years, but recall that a shorter period of 240 days can not still be ruled out. The result of our survey is compared to the global picture of stellar magnetic field properties in the mass-rotation diagram. The comparison shows that these giant planet-host stars tend to have similar magnetic field topologies to stars without detected hot-Jupiters. This needs to be confirmed with a larger sample of stars.Comment: Accepted for publication in Monthly Notices of The Royal Astronomical Societ

    A Gas Giant Circumbinary Planet Transiting the F Star Primary of the Eclipsing Binary Star KIC 4862625 and the Independent Discovery and Characterization of the two transiting planets in the Kepler-47 System

    Full text link
    We report the discovery of a transiting, gas giant circumbinary planet orbiting the eclipsing binary KIC 4862625 and describe our independent discovery of the two transiting planets orbiting Kepler-47 (Orosz et al. 2012). We describe a simple and semi-automated procedure for identifying individual transits in light curves and present our follow-up measurements of the two circumbinary systems. For the KIC 4862625 system, the 0.52+/-0.018 RJup radius planet revolves every ~138 days and occults the 1.47+/-0.08 MSun, 1.7 +/-0.06 RSun F8 IV primary star producing aperiodic transits of variable durations commensurate with the configuration of the eclipsing binary star. Our best-fit model indicates the orbit has a semi-major axis of 0.64 AU and is slightly eccentric, e=0.1. For the Kepler-47 system, we confirm the results of Orosz et al. (2012). Modulations in the radial velocity of KIC 4862625A are measured both spectroscopically and photometrically, i.e. via Doppler boosting, and produce similar results.Comment: 40 pages, 17 figure

    ARCHI: pipeline for light curve extraction of CHEOPS background star

    Full text link
    High precision time series photometry from space is being used for a number of scientific cases. In this context, the recently launched CHEOPS (ESA) mission promises to bring 20 ppm precision over an exposure time of 6 hours, when targeting nearby bright stars, having in mind the detailed characterization of exoplanetary systems through transit measurements. However, the official CHEOPS (ESA) mission pipeline only provides photometry for the main target (the central star in the field). In order to explore the potential of CHEOPS photometry for all stars in the field, in this paper we present archi, an additional open-source pipeline module{\dag}to analyse the background stars present in the image. As archi uses the official Data Reduction Pipeline data as input, it is not meant to be used as independent tool to process raw CHEOPS data but, instead, to be used as an add-on to the official pipeline. We test archi using CHEOPS simulated images, and show that photometry of background stars in CHEOPS images is only slightly degraded (by a factor of 2 to 3) with respect to the main target. This opens a potential for the use of CHEOPS to produce photometric time series of several close-by targets at once, as well as to use different stars in the image to calibrate systematic errors. We also show one clear scientific application where the study of the companion light curve can be important for the understanding of the contamination on the main target.Comment: 14 pages, 13 figures, accepted for publication in MNRAS, all code available at https://github.com/Kamuish/arch

    CoRoT: harvest of the exoplanet program

    Full text link
    One of the objectives of the CoRoT mission is the search for transiting extrasolar planets using high-precision photometry, and the accurate characterization of their fundamental parameters. The CoRoT satellite consecutively observes crowded stellar fields since February 2007, in high-cadence precise photometry; periodic eclipses are detected and analysed in the stellar light curves. Then complementary observations using ground-based facilities allows establishing the nature of the transiting body and its mass. CoRoT has acquired more than 163,000 light curves and detected about 500 planet candidates. A fraction of them (5%) are confirmed planets whose masses are independently measured. Main highlights of the CoRoT discoveries are: i) the variety of internal structures in close-in giant planets, ii) the characterisation of the first known transiting rocky planet, CoRoT-7 b, iii) multiple constraints on the formation, evolution, role of tides in planetary systems.Comment: Icarus, in press, special issue on Exoplanet

    The Carbon-Rich Gas in the Beta Pictoris Circumstellar Disk

    Full text link
    The edge-on disk surrounding the nearby young star Beta Pictoris is the archetype of the "debris disks", which are composed of dust and gas produced by collisions and evaporation of planetesimals, analogues of Solar System comets and asteroids. These disks provide a window on the formation and early evolution of terrestrial planets. Previous observations of Beta Pic concluded that the disk gas has roughly solar abundances of elements [1], but this poses a problem because such gas should be rapidly blown away from the star, contrary to observations of a stable gas disk in Keplerian rotation [1, 2]. Here we report the detection of singly and doubly ionized carbon (CII, CIII) and neutral atomic oxygen (OI) gas in the Beta Pic disk; measurement of these abundant volatile species permits a much more complete gas inventory. Carbon is extremely overabundant relative to every other measured element. This appears to solve the problem of the stable gas disk, since the carbon overabundance should keep the gas disk in Keplerian rotation [3]. New questions arise, however, since the overabundance may indicate the gas is produced from material more carbon-rich than the expected Solar System analogues.Comment: Accepted for publication in Nature. PDF document, 12 pages. Supplementary information may be found at http://www.dtm.ciw.edu/akir/Documents/roberge_supp.pdf *** Version 2 : Removed extraneous publication information, per instructions from the Nature editor. No other changes mad

    Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet

    Full text link
    We report the discovery of a transiting, Rp = 4.347+/-0.099REarth, circumbinary planet (CBP) orbiting the Kepler K+M Eclipsing Binary (EB) system KIC 12351927 (Kepler-413) every ~66 days on an eccentric orbit with ap = 0.355+/-0.002AU, ep = 0.118+/-0.002. The two stars, with MA = 0.820+/-0.015MSun, RA = 0.776+/-0.009RSun and MB = 0.542+/-0.008MSun, RB = 0.484+/-0.024RSun respectively revolve around each other every 10.11615+/-0.00001 days on a nearly circular (eEB = 0.037+/-0.002) orbit. The orbital plane of the EB is slightly inclined to the line of sight (iEB = 87.33+/-0.06 degrees) while that of the planet is inclined by ~2.5 degrees to the binary plane at the reference epoch. Orbital precession with a period of ~11 years causes the inclination of the latter to the sky plane to continuously change. As a result, the planet often fails to transit the primary star at inferior conjunction, causing stretches of hundreds of days with no transits (corresponding to multiple planetary orbital periods). We predict that the next transit will not occur until 2020. The orbital configuration of the system places the planet slightly closer to its host stars than the inner edge of the extended habitable zone. Additionally, the orbital configuration of the system is such that the CBP may experience Cassini-States dynamics under the influence of the EB, in which the planet's obliquity precesses with a rate comparable to its orbital precession. Depending on the angular precession frequency of the CBP, it could potentially undergo obliquity fluctuations of dozens of degrees (and complex seasonal cycles) on precession timescales.Comment: 48 pages, 13 figure
    • …
    corecore