A large fraction of the smallest transiting planet candidates discovered by
the Kepler and CoRoT space missions cannot be confirmed by a dynamical
measurement of the mass using currently available observing facilities. To
establish their planetary nature, the concept of planet validation has been
advanced. This technique compares the probability of the planetary hypothesis
against that of all reasonably conceivable alternative false-positive (FP)
hypotheses. The candidate is considered as validated if the posterior
probability of the planetary hypothesis is sufficiently larger than the sum of
the probabilities of all FP scenarios. In this paper, we present PASTIS, the
Planet Analysis and Small Transit Investigation Software, a tool designed to
perform a rigorous model comparison of the hypotheses involved in the problem
of planet validation, and to fully exploit the information available in the
candidate light curves. PASTIS self-consistently models the transit light
curves and follow-up observations. Its object-oriented structure offers a large
flexibility for defining the scenarios to be compared. The performance is
explored using artificial transit light curves of planets and FPs with a
realistic error distribution obtained from a Kepler light curve. We find that
data support for the correct hypothesis is strong only when the signal is high
enough (transit signal-to-noise ratio above 50 for the planet case) and remains
inconclusive otherwise. PLATO shall provide transits with high enough
signal-to-noise ratio, but to establish the true nature of the vast majority of
Kepler and CoRoT transit candidates additional data or strong reliance on
hypotheses priors is needed.Comment: Accepted for publication in MNRAS; 23 pages, 11 figure