4 research outputs found

    High precision measurements of neutrino fluxes with ENUBET

    No full text
    Neutrino fluxes are currently affected by large normalization uncertainties (5-10%). Neutrino physics will require measurements of absolute neutrino cross sections at the GeV scale with exquisite (1%) precision in the near future. For this reason a reduction of the present uncertainties by one order of magnitude would be highly beneficial. This goal might be achieved by producing a sign and momentum selected narrow band beam and monitoring the production of e+e^{+} in the decay tunnel from the decays of charged Kaons (Ke3K_{e3} channel). This technique, which requires a special instrumented beam-line, would allow a 1% level measurement of the cross-sections of the neutrino species (Îœe\nu_e and Μˉe\bar{\nu}_e) which are the final states involved in the searches for CP violation with muon neutrino beams at long-baseline. The ENUBET Horizon-2020 ERC Consolidator Grant, approved by the European Research Council in 2015, is the framework within which such a non conventional beam-line will be developed. We present a progress report of the project (2016-2021) after about one year of work, the experimental results on ultra-compact calorimeters suited for the instrumenting the decay tunnel and the R&D in the design of the hadronic beamline

    ENUBET: A monitored neutrino beam for high precision cross section measurements

    No full text
    International audienceThe main source of systematic uncertainty on neutrino cross section measurements at the GeV scale is represented by the poor knowledge of the initial flux. The goal of cutting down this uncertainty to 1% can be achieved through the monitoring of charged leptons produced in association with neutrinos, by properly instrumenting the decay region of a conventional narrow-band neutrino beam. Large angle muons and positrons from kaons are measured by a sampling calorimeter on the decay tunnel walls (tagger), while muon stations after the hadron dump can be used to monitor the neutrino component from pion decays. This instrumentation can provide a full control on both the muon and electron neutrino fluxes at all energies. Furthermore, the narrow momentum width (<10%) of the beam provides a O(10%) measurement of the neutrino energy on an event by event basis, thanks to its correlation with the radial position of the interaction at the neutrino detector. The ENUBET project has been funded by the ERC in 2016 to prove the feasibility of such a monitored neutrino beam and is cast in the framework of the CERN neutrino platform (NP06) and the Physics Beyond Colliders initiative. In our contribution, we summarize the ENUBET design, physics performance and opportunities for its implementation in a timescale comparable with next long baseline neutrino experiments

    Lepton reconstruction in the ENUBET tagger

    No full text
    The ENUBET project aims at demonstrating the feasibility of a monitored neutrino beam in which the measurement of associated charged leptons in the instrumented decay region of a conventional beam is used to constrain the neutrino flux to unprecedented precision (O\mathcal{O}(1\%)). Large angle muons and positrons from kaon decays are detected on the decay tunnel walls equipped with a sampling calorimeter with longitudinal, radial and azimuthal segmentation. After a brief description of the ENUBET beamline and of the detectors employed in the lepton tagger, the analysis chain for the event reconstruction, the background suppression and the identification of positrons and muons will be described

    Augmented reality (AR) in minimally invasive surgery (MIS) training: where are we now in Italy? The Italian Society of Endoscopic Surgery (SICE) ARMIS survey

    No full text
    Minimally invasive surgery (MIS) is a widespread approach in general surgery. Computer guiding software, such as the augmented reality (AR), the virtual reality (VR) and mixed reality (MR), has been proposed to help surgeons during MIS. This study aims to report these technologies' current knowledge and diffusion during surgical training in Italy. A web-based survey was developed under the aegis of the Italian Society of Endoscopic Surgery (SICE). Two hundred and seventeen medical doctors' answers were analyzed. Participants were surgeons (138, 63.6%) and residents in surgery (79, 36.4%). The mean knowledge of the role of the VR, AR and MR in surgery was 4.9 ± 2.4 (range 1-10). Most of the participants (122, 56.2%) did not have experience with any proposed technologies. However, although the lack of experience in this field, the answers about the functioning of the technologies were correct in most cases. Most of the participants answered that VR, AR and MR should be used more frequently for the teaching and training and during the clinical activity (170, 80.3%) and that such technologies would make a significant contribution, especially in training (183, 84.3%) and didactic (156, 71.9%). Finally, the main limitations to the diffusion of these technologies were the insufficient knowledge (182, 83.9%) and costs (175, 80.6%). Based on the present study, in Italy, the knowledge and dissemination of these technologies are still limited. Further studies are required to establish the usefulness of AR, VR and MR in surgical training
    corecore