406 research outputs found

    Thermally activated vapor bubble nucleation: the Landau-Lifshitz/Van der Waals approach

    Get PDF
    Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists in these metastable (overheating and tensile, respectively) states for a long time since bubble nucleation is an activated process that needs to surmount the free energy barrier separating the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically, only for extremely small systems treated at atomistic level of detail. In this work a powerful approach, based on a continuum diffuse interface modeling of the two-phase fluid embedded with thermal fluctuations (Fluctuating Hydrodynamics) is exploited to study the nucleation process in homogeneous conditions, evaluating the bubble nucleation rates and following the long term dynamics of the metastable system, up to the bubble coalescence and expansion stages. In comparison with more classical approaches, this methodology allows on the one hand to deal with much larger systems observed for a much longer times than possible with even the most advanced atomistic models. On the other it extends contin- uum formulations to thermally activated processes, impossible to deal with in a purely determinist setting

    Shock formation in the collapse of a vapor nano-bubble

    Get PDF
    In this paper a diffuse-interface model featuring phase change, transition to supercritical conditions, thermal conduction, compressibility effects and shock wave propagation is exploited to deal with the dynamics of a cavitation bubble. At variance with previous descriptions, the model is uniformly valid for all phases (liquid, vapor and supercritical) and phase transitions involved, allowing to describe the non-equilibrium processes ongoing during the collapse. As consequence of this unitary description, rather unexpectedly for pure vapor bubbles, the numerical experiments show that the collapse is accompanied by the emission of a strong shock wave in the liquid and by the oscillation of the bubble that periodically disappears and reappears, due to transition to super/sub critical conditions. The mechanism of shock wave formation is strongly related to the transition of the vapor to supercritical state, with a progressive steepening of the compression wave to form the shock which is eventually reflected as an outward propagating wave in the liquid

    Diffuse interface modeling of a radial vapor bubble collapse

    Get PDF
    A diffuse interface model is exploited to study in details the dynamics of a cavitation vapor bubble, by including phase change, transition to supercritical conditions, shock wave propagation and thermal conduction. The numerical experiments show that the actual dynamic is a sequence of collapses and rebounds demonstrating the importance of nonequilibrium phase changes. In particular the transition to supercritical conditions avoids the full condensation and leads to shockwave emission after the collapse and to successive bubble rebound

    Dynamics of a vapor nanobubble collapsing near a solid boundary

    Get PDF
    In the present paper a diffuse interface approach is used to address the collapse of a sub-micron vapor bubble near solid boundaries. This formulation enables an unprecedented description of interfacial flows that naturally takes into account topology modification and phase changes (both vapor/liquid and vapor/supercritical fluid transformations). Results from numerical simulations are exploited to discuss the complex sequence of events associated with the bubble collapse near a wall, encompassing shock-wave emissions in the liquid and reflections from the wall, their successive interaction with the expanding bubble, the ensuing asymmetry of the bubble and the eventual jetting phase

    Deposition of thick and thin nanocrystalline diamond films by microwave plasma enhanced chemical vapor deposition

    Get PDF
    Thick (around 3 μm) and thin (48-310 nm) nanocrystalline diamond (NCD) films have been produced from Ar-rich CH4/Ar/H2 (1/89/10 %) and H2-rich CH4/H2 (1/99 %) microwave plasmas, respectively. The thick NCD films were obtained with and without an initial buffer layer (BL). The BL is easily obtained under typical microcrystalline diamond growth conditions (CH4/H2 mixtures). The effect of the deposition temperature (TD, 630-900°C) was investigated on the morphology, the surface roughness and the bonding characteristics of the films grown with and without BL. The thin NCD films were grown on Si substrates treated by two different methods, i.e. ultrasonic agitation in a suspension of diamond powders of 40-60 μm or combinatorial approach in a suspension of mixed diamond powders of 250 nm and 40-60 μm. The present experimental results show that the buffer layer procedure allows a good preservation of the surface of treated Si substrate and the combinatorial approach promotes effectively the seeding of the Si surface

    Relaxation of a steep density gradient in a simple fluid: comparison between atomistic and continuum modeling

    Full text link
    We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g. density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such at the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the example considered

    Water cavitation from ambient to high temperatures

    Get PDF
    Abstract Predicting cavitation has proved a formidable task, particularly for water. Despite the experimental difficulty of controlling the sample purity, there is nowadays substantial consensus on the remarkable tensile strength of water, on the order of −120 MPa at ambient conditions. Recent progress significantly advanced our predictive capability which, however, still considerably depends on elaborate fitting procedures based on the input of external data. Here a self-contained model is discussed which is shown able to accurately reproduce cavitation data for water over the most extended range of temperatures for which accurate experiments are available. The computations are based on a diffuse interface model which, as only inputs, requires a reliable equation of state for the bulk free energy and the interfacial tension. A rare event technique, namely the string method, is used to evaluate the free-energy barrier as the base for determining the nucleation rate and the cavitation pressure. The data allow discussing the role of the Tolman length in determining the nucleation barrier, confirming that, when the size of the cavitation nuclei exceed the thickness of the interfacial layer, the Tolman correction effectively improves the predictions of the plain Classical Nucleation Theory

    Search of neutrino CPV with the T2K experiment

    Get PDF
    In the T2K (Tokai-to-Kamioka) experiment, an off-axis neutrino beam with a peak energy of ∼ 0.6 GeV is produced at the J-PARC accelerator facility, with the flavour content dominated by either muon neutrinos or muon antineutrinos, depending on the choice of the polarity of the magnetic focusing horns. The neutrino beam is detected first in the near detector ND280, where the flavour composition of the incoming neutrino flux is not expected to be affected by oscillation, and then travels 295 km to the far detector Super-Kamiokande, where oscillation significantly affects the flavour composition. We report the results of a joint analysis of neutrino and anti-neutrino oscillations at T2K, obtained by collecting a total statistic of 2.25×1021 protons-on-target (POT). Currently T2K can claim the world leading sensitivity to the neutrino-sector CPV, thanks to a number of critical improvements in the oscillation analysis combined together with a stable operation at intense beam power. In fact, T2K is the first experiment able to reject the CP-conserving values of δCP at 2σ C.L

    Heterogeneous bubble nucleation dynamics

    Get PDF

    Unraveling low nucleation temperatures in pool boiling through fluctuating hydrodynamics simulations

    Get PDF
    When dealing with numerical simulations of boiling phenomena, the spontaneous appearance of vapor bubbles is one of the most critical feature to be addressed. Capturing bubble formation during the dynamics, instead of patching vapor regions as initial conditions, is crucial for the correct evaluation of nucleation rates and nucleation site density, two of the most important parameters characterizing boiling. In this work the Diffuse Interface modeling for vapor–liquid systems is coupled with Fluctuating Hydrodynamics Theory to properly address this aspect and to analyze the detailed nucleation mechanism during boiling inception on a hot surface. The simulations revealed a new enhancing mechanism of bubble formation that is able to explain the low onset temperature measured in boiling experiments on ultra-smooth, wettable surfaces: the interaction and coalescence between sub-critical vapor embryos plays a fundamental role in lowering the onset temperature, increasing the lifetime of the embryos and their probability to trigger the phase change
    • …
    corecore