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Diffuse interface modeling of a radial vapor bubble

collapse
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Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma “La Sapienza”, via
Eudossiana 18, 00184 Roma Italy

E-mail: francesco.magaletti@uniroma1.it

Abstract. A diffuse interface model is exploited to study in details the dynamics of a
cavitation vapor bubble, by including phase change, transition to supercritical conditions,
shock wave propagation and thermal conduction. The numerical experiments show that the
actual dynamic is a sequence of collapses and rebounds demonstrating the importance of non-
equilibrium phase changes. In particular the transition to supercritical conditions avoids the
full condensation and leads to shockwave emission after the collapse and to successive bubble
rebound.

1. Introduction
The collapse of a vapor bubble is a classical but still crucial phenomenon in the realm of
the physics of fluids [1]. The interest is twofold, being aimed at the analysis and a better
comprehension of the complex physical mechanisms involved in the processes and to the
important possible applications which range from the cavitation over ship propellers to the
drug delivery strategy in biological systems.

Collapse bubble dynamics is difficult to model since several spatial and time scales can
be involved in the same process. Moreover non trivial effects like phase transition to and
from supercritical conditions or shock formation can easily be encountered. As the bubble
radius decreases the surface tension at the interface becomes more and more relevant and the
condensation and compression phenomena can lead to extreme pressure and temperatures.

Experimental results are usually based on visual analysis carried out with high speed cameras
which can give a quantitative description or indirect information [2]. On the other hand,
numerical results can be particularly demanding and very sensitive to the mathematical model
adopted. Recently more detailed physical models have been proposed to study the dynamics of
the bubble interface [3, 4], possibly taking into account the presence of a dissolved gas [5].

We present the results obtained by a diffuse interface model based on the van der Waals free
energy functional. Following this approach the effects of the capillarity are naturally embedded
in the physical model and it is possible to deal with the interface dynamic as well as with complex
phase change phenomena. The collapse of the vapor bubble has been thoroughly studied, in
particular in the case where the interface speed may exceed the speed of sound. In this peculiar
condition, the complex dynamic of shock waves, focused towards the bubble and successively
reflected back in the liquid, has been analyzed and discussed. Furthermore we considered in
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details the effects of condensation and of rapid compression which locally bring the vapor in
supercritical conditions.

2. Mathematical model and numerical solution
Vapor bubble dynamics is a particular case of the most general two-phase interfacial flows
phenomena. The fluid dynamic modeling of interfacial problems has been a challenge for
theoreticians due to their intrinsic multi-scale nature. Indeed the interfacial (i.e. capillary)
properties of a liquid-vapor system, acting on the molecular length scale, strongly interact with
the characteristic macroscopic length scale of the fluid dynamic problem. In the last decades
several different models have been proposed to describe liquid-vapor systems endowing capillary
stresses and they can be grouped into the two main categories of sharp and diffuse interface
approaches (see the review [6]).

In this work we adopt an unsteady diffuse interface model coupled with the choice of van der
Waals state equation (see [7, 8] for details). This model can be deduced introducing a suitable
non-local free energy functional F [ρ, θ] with a gradient type excess energy:

F [ρ, θ] =

∫
Ω

(
f̂0 (ρ, θ) +

λ

2
|∇ρ|2

)
dV , (1)

where λ is a coefficient strongly related to the interfacial properties of the liquid-vapor system
(i.e. surface tension and interface thickness) and f̂0 (ρ, θ) the bulk free energy density per unit
volume of a uniform fluid at temperature θ and density ρ. In particular, we choose the van
der Waals free energy for a polytropic fluid (constant volume specific heat cv) whose expression
follows:

f̂0 (ρ, θ) = R̄ρθ

[
−1 + log

(
ρK θ1/δ

1− bρ

)]
− aρ2 , (2)

with δ = R̄/cv, R̄ the gas constant, a and b the van der Waals gas constants and K a constant
related to the de Broglie length [9].

Given the thermodynamic behavior of the inhomogeneous system, its fluid dynamics, under
the assumption of spherical symmetry, is described by the following conservation laws for mass,
momentum and total energy densities
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with ur the radial component of the fluid velocity and k the thermal conductivity. The stress
tensor T in the equations takes into account both the viscous and diffused capillary stresses and
its relevant components read:
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The classical thermodynamic pressure p0 for a van der Waals fluid is readily obtained from
Eq. (2):

p0 = −∂f0

∂v
= −∂f̂0/ρ

∂v
= R̄

ρθ

1− bρ
− aρ2 , (8)

with f0 = f̂0/ρ the specific bulk free energy and v = 1/ρ the specific volume.
The system of equations in (3-5) is numerically challenging because it contains several

phenomena, asking for specific numerical techniques. The first aspect is the presence of the
moving and extremely thin liquid-vapor interface that requires a great amount of grid points in
order to correctly capture the capillary stress. Another issue is related to the formation of shock
waves, hence the numerical scheme needs to be based on shock-capturing method, such as ENO
or WENO schemes [10]. These methods work only with hyperbolic equations, but the presence
of viscosity and capillarity implies a non-hyperbolic nature of the equations. A classical Strang
operator-splitting addresses this issue, isolating the viscous and capillary operators discretized
with classical central finite difference from the hyperbolic part where a WENO scheme is used.
The boundary conditions of fixed pressure and temperature, far away from the bubble, are
imposed with a characteristic-wave approach [11]. Further details can be found in [8].

3. Results and discussion
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Figure 1. In the left panel, the radius evolution for different overpressure in the liquid. The
inset shows the position of the shock radiated after the collapse with the same colors of the main
plot. In the right panel, the evolution of the thermodynamic condition in the p−ρ plane (with pc
and ρc the critical pressure and density, respectively). The green curve represents the conditions
at the bubble center along the evolution. The red and black curves represent the conditions in
the whole domain at two different time instant, before and after the collapse, respectively

The system is initially in equilibrium with a pure vapor bubble of radius Req immersed in its
liquid at pressure pe. The radial collapse is initiated by imposing an overpressure in the liquid
∆p = p∞−pe. Along the evolution the bubble radius is defined as the distance of the liquid from
the bubble center, see the left panel of Fig. 1 where the radius evolution is plotted for different
overpressures and is compared with the prediction of the Keller model [3]. The actual dynamic
consists in a sequence of collapses and rebounds (that resembles the evolution of a pure gas
bubble), while the simplified Keller model predicts a full condensation after the first collapse if
no dissolved gas is added in the description. The key features that explains the rebounds is the
transition of the vapor into supercritical state. The phase change into supercritical conditions,
indeed, avoids the full condensation and allows the bubble rebound. When the bubble reaches
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its minimum radius, a shockwave is radiated into the liquid phase, as shown in the inset of
Fig. 1.

The thermodynamic conditions reached along the evolution are reported in the right panel of
Fig.1. As background information (with blue lines), the figure provides the main thermodynamic
features of the van der Waals system, e.g. critical isotherm and isobar, binodal and spinodal
curve. The region between binodal and spinodal lines corresponds to metastable states
(matestable liquid/vapor to the right/left of the critical density). In a finite size, equilibrium
bubble, the vapor is in the corresponding metastable region, while the liquid state is inside the
stable region to the right of the binodal line. The square symbols (green on line) show the
thermodynamic state of the fluid occupying the bubble center at successive time instants during
the first collapse/expansion phase. The evolution is towards increasing (decreasing) pressures
during collapse (expansion). The two branches match at pressure higher than those reported in
the diagram. During collapse, the fluid at the center of the bubble starts in the vapor region and
follows the saturation line (binodal curve) only during the first stage of the collapse. Successively
it enters the gas region to finally become supercritical reaching extremely high pressures and
temperatures. The reverse sequence is observed during expansion. Triangles and circles (red
and black lines, respectively) show the states of the fluid at changing radial position at two time
instants, t/tc = 0.85 during the collapse phase before the first rebound, and t/tc = 1.15 during
the successive expansion phase. In the latter curve, the steep pressure increase at high density
(corresponding to liquid) is the pressure jump across the shockwave generated at rebound.

The transition to supercritical conditions is the key feature of the collapse of a vapor bubble.
The rapid compression experienced by the vapor avoid the full condensation and leads to the
transition to incondensable gaseous state. As a main consequence, the dynamic of a pure
vapor bubble shows typical features of a pure gas bubble collapse such as shockwave emission
and bubble rebounds, implying the importance of including phase change phenomena into the
modeling of cavitation problems.

References
[1] Rayleigh L 1917 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34

94–98
[2] Taleyarkhan R P, West C, Cho J, Lahey R, Nigmatulin R and Block R 2002 Science 295 1868–1873
[3] Keller J B and Kolodner I I 1956 Journal of Applied Physics 27 1152–1161
[4] Plesset M S and Chapman R B 1971 Journal of Fluid Mechanics 47 283–290
[5] Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N and Lauterborn W 2001 Physics of Fluids 13

2805–2819
[6] Anderson D, McFadden G and Wheeler A 1998 Annual Review of Fluid Mechanics 30 139–165 ISSN 0066-

4189
[7] Jamet D, Lebaigue O, Coutris N and Delhaye J 2001 Journal of Computational Physics 169 624–651
[8] Magaletti F, Marino L and Casciola C 2015 Physical Review Letters 114 064501
[9] Zhao N, Mentrelli A, Ruggeri T and Sugiyama M 2011 Physics of Fluids 23 086101

[10] Shu C W 1998 Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic
conservation laws (Springer)

[11] Poinsot T J and Lele S 1992 Journal of computational physics 101 104–129

9th International Symposium on Cavitation (CAV2015) IOP Publishing
Journal of Physics: Conference Series 656 (2015) 012028 doi:10.1088/1742-6596/656/1/012028

4




