1,723 research outputs found

    Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths

    Get PDF
    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints

    Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study

    Get PDF
    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM

    On the Validity of Immersive Virtual Reality as tool for multisensory evaluation of urban spaces

    Get PDF
    The Europe2020 document indicates a new strategy to turn EU into a smart, sustainable and inclusive economy. At local level urban planning policies may help to reach these aims. Several research works proposed the Immersive Virtual Reality as tool to evaluate the effectiveness of these interventions. Nevertheless people's perception within virtual environments still needs to be verified. In this study, two groups of participants had to provide subjective measures related to the global, acoustic and visual quality of a real environment or of a multisensory reproduced version in Immersive Virtual Reality. Outcomes highlight the ecological effectiveness of this multisensory tool

    Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    Get PDF
    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.Comment: 10 pages, 7 color figures (incl. appendices) Close to the published versio

    Representation of visual gravitational motion in the human vestibular cortex

    Get PDF
    How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain

    Metabolic findings on 3T 1H-MR spectroscopy in peritumoral brain edema.

    Get PDF
    BACKGROUND AND PURPOSE: Little is known about the metabolic properties of brain edema associated with tumors. This work was conducted on the basis of the assumption that, in the presence of intra-axial and extra-axial brain tumors, the white matter involved by the edema is a site of metabolic change that involves the structure of the myelin sheath. MATERIALS AND METHODS: Thirteen patients comprised our cohort affected by intra-axial and extra-axial cerebral tumors with a peritumoral T2-weighted MR signal hyperintensity as a result of edema, where MR spectroscopy showed no increase in choline-containing compounds. Measurements on proton MR spectroscopy (1H-MR spectroscopy) were performed with a 3T whole-body scanner with use of a point-resolved spectroscopy sequence for localization (TR, 2000 ms; TE, 35 ms), and the metabolites were quantified with the SAGE method. Peak intensities of the main metabolites were expressed as ratios of one another and were compared with values obtained in the white matter of the left frontal region in a control group of 16 healthy volunteers. RESULTS: Choline-to-creatine (Cho/Cr) and myo-inositol-to-creatine (mIns/Cr) signal intensity ratios were normal in all patients. N-acetylaspartate-to-creatine (NAA/Cr) and N-acetylaspartate-to-choline (NAA/Cho) ratios decreased in 4 patients. Glutamate plus glutamine-to-creatine (Glx/Cr) was increased in 10 patients. A resonance peak at 3.44 ppm, strongly suggesting the presence of glucose, was detected in all but 1 patient. Lactate was detected in 12 patients and lipids in 5. Moreover, the resonances that pertained to the aliphatic amino acids valine, leucine, and isoleucine were present in 12 patients. CONCLUSIONS: Our findings on MR spectroscopy confirmed the hypothesis that in the edema surrounding brain tumors, an energy-linked metabolic alteration was associated with injury to the myelin sheath

    Development of large radii half-wave plates for CMB satellite missions

    Full text link
    The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.Comment: 16 page

    Is acidemia at birth a risk factor for functional gastrointestinal disorders?

    Get PDF
    Functional gastrointestinal disorders (FGIDs) are common in early childhood. It has been demonstrated that neonatal acidemia at delivery can lead to significant neonatal morbidity. The primary aim of this study was to evaluate the relationship between acidemia at birth and the development of FGIDs, as regurgitation, colic, and constipation, in term infants. Term newborns born at the Foggia University Hospital, Italy during the year 2020 were included in the study. As per routine clinical practice, a cord blood gas analysis on a blood sample drawn from the umbilical artery (UA) of each infant immediately after birth was performed, and Apgar score was recorded. One year after birth, each infant's parents were interviewed through a phone call to investigate development of FGIDs, feeding practices, and morbidities. During the study period, 1574 term newborns met the inclusion criteria. The prevalence of infantile colic, regurgitation, and constipation was higher in infants with low UA pH (colic 51.5% vs. 25.4%, p < 0.001; regurgitation 30.6% vs. 15.2%, p < 0.001; constipation 24.6% vs. 16.0%, p = 0.015), with infants having moderate-severe acidemia facing the highest risk for all the examined FGIDs. In binary logistic regression analyses, UA pH and perinatal antibiotic exposure proved to be independently associated with the later diagnosis of each FGID. Conclusion: Newborns with acidemia at birth appear to face a higher risk of FGIDs in infancy. Avoiding low cord blood pH should continue to be the goal for obstetricians, while enhanced long-term surveillance for infants who experienced birth acidemia should be required

    The High Frequency Instrument of Planck: Requirements and Design

    Get PDF
    The Planck satellite is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. It is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB) with unprecedented sensitivity and angular resolution. The detectors of its High frequency Instrument (HFI) are bolometers cooled down to 100 mK. Their sensitivity will be limited by the photon noise of the CMB itself at low frequencies, and of the instrument background at high frequencies. The requirements on the measurement chain are directly related to the strategy of observation used for the satellite. Due to the scanning on the sky, time features of the measurement chain are directly transformed into angular features in the sky maps. This impacts the bolometer design as well as other elements: For example, the cooling system must present outstanding temperature stability, and the amplification chain must show, down to very low frequencies, a flat noise spectrum
    corecore