10 research outputs found

    The legacy of 1300 years of land use in Jamaica

    Get PDF
    Despite decades of archaeological research on Jamaica, little is known about how settlers influenced landscape change on the island over time. Here, we examine the impact of human occupation through a multi-proxy approach using phytolith, charcoal, and stratigraphic analyses. White Marl was a continuously inhabited village settlement (ca. 1050–450 cal yrs BP) with large mounded midden areas, precolonial house structures, and human landscape management practices. We have shown that the local vegetation at White Marl was directly affected by human settlement through the use of agroforestry and burning, and suggest that fire was used to modify vegetation. Manioc phytoliths were found throughout human occupation and are broadly associated with increases in evidence for burning, suggesting fire was used to modify the landscape and clear vegetation for crop cultivation. The phytolith assemblages relate to three distinct temporal vegetation phases: (1) the earliest occupation dominated by arboreal vegetation (pre-ca. 870 cal yrs BP); (2) a transition to palm-dominated vegetation (ca. 870–670 cal yrs BP); and (3) the latest occupation representing European colonization associated with a more open, grass-dominated landscape (after ca. 670 cal yrs BP). These transitions occur independent of changes in paleoclimate records, suggesting humans were the dominant driver of vegetation change

    Nonlinear landscape and cultural response to sea-level rise

    Get PDF
    Rising sea levels have been associated with human migration and behavioral shifts throughout prehistory, often with an emphasis on landscape submergence and consequent societal collapse. However, the assumption that future sea-level rise will drive similar adaptive responses is overly simplistic. While the change from land to sea represents a dramatic and permanent shift for preexisting human populations, the process of change is driven by a complex set of physical and cultural processes with long transitional phases of landscape and socioeconomic change. Here, we use reconstructions of prehistoric sea-level rise, paleogeographies, terrestrial landscape change, and human population dynamics to show how the gradual inundation of an island archipelago resulted in decidedly nonlinear landscape and cultural responses to rising sea levels. Interpretation of past and future responses to sea-level change requires a better understanding of local physical and societal contexts to assess plausible human response patterns in the future

    Non-linear landscape and cultural response to sea-level rise (datasets)

    No full text
    Dataset S1 (separate file). Relative sea-level database for Scilly comprising directly dated radiocarbon and optically stimulated luminescence samples with corresponding metainformation (lithostratigraphy, elevation, depositional environment and indicative meaning interpretations, paleotidal range change and sea-level calculations) following the ‘HOLSEA’ (‘Geographic Variability of Holocene Relative Sea Level’) protocol (Khan et al., 2019*). Dataset S2 (separate file). Table containing pollen results as relative abundance (genus level), modelled ages and age uncertainty for pollen samples, landcover index results (community cluster numbers and nMDS ordination axes 1 and 2), foraminifera results as species counts and transfer function results as paleomarsh elevations with uncertainty (1σ). Foraminifera samples with low test concentrations have indicative ranges (from mean high water neap tides to highest astronomical tides) in place of paleomarsh elevation estimations. Foraminifera abbreviations: H.wil – Haplophragmoides wilbertii ; J.mac – Jadammina macrescens ; M.fus – Miliammina fusca ; P.ipo – Polysaccammina ipohalina ; T.inf – Trochammina infalta ; T.och – Trochammina ochracea ; A.bat - Ammonia batavus ; A.mam – Asterigerinata mamilla ; B.var – Bolivina variablis; E.cri – Elphidium crispum ; E.wil – Elphidium Williamsoni ; F.spp. – Fissurina spp. ; Elphidium spp. ; H.ger – Haynesina germanica ; L.lob – Lobatula lobatula ; O.spp. – Oolha spp. ; Q.sem – Quinqueloculina seminula; R.spp. – Rosalina spp.. Dataset S3 (separate file). Database containing three worksheets for developing archaeological indices for Scilly. ‘SWBritain’ – Radiocarbon dates from Devon and Cornwall used to develop a summed probability distribution curve as an estimate of population demographic variation in Southwest Britain. ‘NWFrance’ - Radiocarbon dates from Brittany and Normandy used to develop a summed probability distribution curve as an estimate of population demography in Northwest France. ‘Scilly’ – Archaeological monuments from Scilly used to develop a probabilistic index of population variability.The article associated with these datasets is located in ORE at: http://hdl.handle.net/10871/123489Rising sea levels have been associated with human migration and behavioral shifts throughout prehistory, often with an emphasis on landscape submergence and consequent societal collapse. However, the assumption that future sea-level rise will drive similar adaptive responses is overly simplistic. Whilst the change from land to sea represents a dramatic and permanent shift for pre-existing human populations, the process of change is driven by a complex set of physical and cultural processes with long transitional phases of landscape and socio-economic change. Here we use reconstructions of prehistoric sea-level rise, paleogeographies, terrestrial landscape change and human population dynamics to show how the gradual inundation of an island archipelago resulted in decidedly non-linear landscape and cultural responses to rising sea-levels. Interpretation of past and future responses to sea-level change requires a better understanding of local physical and societal contexts to assess plausible human response patterns in the future.Historic EnglandWelsh GovernmentHigher Education Funding Council for Wale

    Fire as a fundamental ecological process: Research advances and frontiers

    Get PDF
    Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study. Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling. We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts. Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives

    Mobilizing the past to shape a better Anthropocene

    No full text

    More than 10,000 pre-Columbian earthworks are still hidden throughout Amazonia.

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Data from publicly available sources are cited in the supplementary materials. Other data and computer codes used in the analysis are publicly available at Zenodo repositoryIndigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.Coordination of Superior Level Staff Improvement under the Academic Excellence Program (CAPES/PROEX)Coordination of Superior Level Staff Improvement under the Academic Excellence Program (CAPES/PROEX)Coordination of Superior Level Staff Improvement under the Academic Excellence Program (CAPES/PROEX)National Council for Scientific and Technological Development (CNPQ)National Council for Scientific and Technological Development (CNPQ)National Council for Scientific and Technological Development (CNPQ)European Research CouncilSão Paulo Research Foundation (FAPESP)Amazon FundSão Paulo Research Foundation (FAPESP)PVEMEC/MCTI/CAPES/CNPq/FAPEuropean Union’s Horizon 2020European Union’s Horizon 2020CAPESANRMCT/CNPq/CT-INFRA/GEOMAMCT/CNPq/CT-INFRA/GEOMACAPES/PDSECAPES/FapespaCNPqFAPESPCNPq/CAPES/FAPS/BC-NewtonFAPEMATRoyal Society GCRF International Collaboration AwardNSF/DEBCNPQ/PQNatural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Gordon and Betty Moore Foundatio

    Contributions of Quaternary botany to modern ecology and biogeography

    No full text
    corecore