432 research outputs found

    Comparison of T1 mapping techniques for ECV quantification. histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR

    Get PDF
    BACKGROUND: Myocardial extracellular volume (ECV) is elevated in fibrosis or infiltration and can be quantified by measuring the haematocrit with pre and post contrast T1 at sufficient contrast equilibrium. Equilibrium CMR (EQ-CMR), using a bolus-infusion protocol, has been shown to provide robust measurements of ECV using a multibreath-hold T1 pulse sequence. Newer, faster sequences for T1 mapping promise whole heart coverage and improved clinical utility, but have not been validated. METHODS: Multibreathhold T1 quantification with heart rate correction and single breath-hold T1 mapping using Shortened Modified Look-Locker Inversion recovery (ShMOLLI) were used in equilibrium contrast CMR to generate ECV values and compared in 3 ways.Firstly, both techniques were compared in a spectrum of disease with variable ECV expansion (n=100, 50 healthy volunteers, 12 patients with hypertrophic cardiomyopathy, 18 with severe aortic stenosis, 20 with amyloid). Secondly, both techniques were correlated to human histological collagen volume fraction (CVF%, n=18, severe aortic stenosis biopsies). Thirdly, an assessment of test:retest reproducibility of the 2 CMR techniques was performed 1 week apart in individuals with widely different ECVs (n=10 healthy volunteers, n=7 amyloid patients). RESULTS: More patients were able to perform ShMOLLI than the multibreath-hold technique (6% unable to breath-hold). ECV calculated by multibreath-hold T1 and ShMOLLI showed strong correlation (r(2)=0.892), little bias (bias -2.2%, 95%CI -8.9% to 4.6%) and good agreement (ICC 0.922, range 0.802 to 0.961, p<0.0001). ECV correlated with histological CVF% by multibreath-hold ECV (r(2)= 0.589) but better by ShMOLLI ECV (r(2)= 0.685). Inter-study reproducibility demonstrated that ShMOLLI ECV trended towards greater reproducibility than the multibreath-hold ECV, although this did not reach statistical significance (95%CI -4.9% to 5.4% versus 95%CI -6.4% to 7.3% respectively, p=0.21). CONCLUSIONS: ECV quantification by single breath-hold ShMOLLI T1 mapping can measure ECV by EQ-CMR across the spectrum of interstitial expansion. It is procedurally better tolerated, slightly more reproducible and better correlates with histology compared to the older multibreath-hold FLASH techniques

    Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study

    Get PDF
    Repetitive focal muscle vibration (rMV) is known to promote neural plasticity and long-lasting motor recovery in chronic stroke patients. Those structural and functional changes within the motor network underlying motor recovery occur in the very first hours after stroke. Nonetheless, to our knowledge, no rMV-based studies have been carried out in acute stroke patients so far, and the clinical benefit of rMV in this phase of stroke is yet to be determined. The aim of this randomized double-blind sham-controlled study is to investigate the short-term effect of rMV on motor recovery in acute stroke patients. Out of 22 acute stroke patients, 10 were treated with the rMV (vibration group–VG), while 12 underwent the sham treatment (control group–CG). Both treatments were carried out for 3 consecutive days, starting within 72 h of stroke onset; each daily session consisted of three 10-min treatments (for each treated limb), interspersed with a 1-min interval. rMV was delivered using a specific device (Cro®System, NEMOCO srl, Italy). The transducer was applied perpendicular to the target muscle's belly, near its distal tendon insertion, generating a 0.2–0.5 mm peak-to-peak sinusoidal displacement at a frequency of 100 Hz. All participants also underwent a daily standard rehabilitation program. The study protocol underwent local ethics committee approval (ClinicalTrial.gov NCT03697525) and written informed consent was obtained from all of the participants. With regard to the different pre-treatment clinical statuses, VG patients showed significant clinical improvement with respect to CG-treated patients among the NIHSS (p < 0.001), Fugl-Meyer (p = 0.001), and Motricity Index (p < 0.001) scores. In addition, when the upper and lower limb scales scores were compared between the two groups, VG patients were found to have a better clinical improvement at all the clinical end points. This study provides the first evidence that rMV is able to improve the motor outcome in a cohort of acute stroke patients, regardless of the pretreatment clinical status. Being a safe and well-tolerated intervention, which is easy to perform at the bedside, rMV may represent a valid complementary non-pharmacological therapy to promote motor recovery in acute stroke patients

    Quad-Chip Double-Balanced Frequency Tripler

    Get PDF
    Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy

    Introgressive hybridisation between domestic pigs (<i>Sus scrofa domesticus</i>) and endemic Corsican wild boars (<i>S. s. meridionalis</i>):Effects of human-mediated interventions

    Get PDF
    Owing to the intensified domestication process with artificial trait selection, introgressive hybridisation between domestic and wild species poses a management problem. Traditional free-range livestock husbandry, as practiced in Corsica and Sardinia, is known to facilitate hybridisation between wild boars and domestic pigs (Sus scrofa). Here, we assessed the genetic distinctness and genome-wide domestic pig ancestry levels of the Corsican wild boar subspecies S. s. meridionalis, with reference to its Sardinian conspecifics, employing a genome-wide single nucleotide polymorphism (SNP) assay and mitochondrial control region (mtCR) haplotypes. We also assessed the reliance of morphological criteria and the melanocortin-1 receptor (MC1R) coat colour gene to identify individuals with domestic introgression. While Corsican wild boars showed closest affinity to Sardinian and Italian wild boars compared to other European populations based on principal component analysis, the observation of previously undescribed mtCR haplotypes and high levels of nuclear divergence (Weir's θ > 0.14) highlighted the genetic distinctness of Corsican S. s. meridionalis. Across three complementary analyses of mixed ancestry (i.e., STRUCTURE, PCADMIX, and ELAI), proportions of domestic pig ancestry were estimated at 9.5% in Corsican wild boars, which was significantly higher than in wild boars in Sardinia, where free-range pig keeping was banned in 2012. Comparison of morphologically pure- and hybrid-looking Corsican wild boars suggested a weak correlation between morphological criteria and genome-wide domestic pig ancestry. The study highlights the usefulness of molecular markers to assess the direct impacts of management practices on gene flow between domestic and wild species

    Hypertrophic cardiomyopathy: insights from extracellular volume mapping

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease characterized by myocardial hypertrophy and fibrosis. The phenotypic expression ranges from asymptomatic patients to heart failure and sudden death.1 Disease progression and relationship between hypertrophy and fibrosis are not well understood. Extracellular volume fraction (ECV) mapping on cardiovascular magnetic resonance (CMR) can demonstrate pixel-by-pixel ECV elevation (focal or diffuse fibrosis) or reduction (cellular hypertrophy).2 Furthermore, it has been shown that physical training induces remodelling of both heart and vasculature.3,4 In particular, it has been shown that hypertrophied myocardium in athletes has lower ECV, suggesting that cardiac athletic adaptation is an adaptive one caused predominantly by cellular rather than interstitial expansion.4 Hypothesizing that ECV mapping can reveal both differential responses of left ventricular hypertrophy (LVH), we explored the distribution of ECV in HCM

    Ischemic heart disease and heart failure. role of coronary ion channels

    Get PDF
    Heart failure is a complex syndrome responsible for high rates of death and hospitalization. Ischemic heart disease is one of the most frequent causes of heart failure and it is normally attributed to coronary artery disease, defined by the presence of one or more obstructive plaques, which determine a reduced coronary blood flow, causing myocardial ischemia and consequent heart failure. However, coronary obstruction is only an element of a complex pathophysiological process that leads to myocardial ischemia. In the literature, attention paid to the role of microcirculation, in the pathophysiology of ischemic heart disease and heart failure, is growing. Coronary microvascular dysfunction determines an inability of coronary circulation to satisfy myocardial metabolic demands, due to the imbalance of coronary blood flow regulatory mechanisms, including ion channels, leading to the development of hypoxia, fibrosis and tissue death, which may determine a loss of myocardial function, even beyond the presence of atherosclerotic epicardial plaques. For this reason, ion channels may represent the link among coronary microvascular dysfunction, ischemic heart disease and consequent heart failure

    ELMOD3-SH2D6 gene fusion as a possible co-star actor in autism spectrum disorder scenario

    Get PDF
    Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by high heritability. It is known that genetic factors contribute to ASD pathogenesis. In particular, copy number variants (CNVs) are involved in ASD susceptibility and can affect gene expression regulation. 2p11.2 microdeletions encompassing ELMOD3, CAPG and SH2D6 genes have been described in four unrelated ASD families. The present study revealed that this microdeletion is responsible for the production of a chimeric transcript generated from the fusion between ELMOD3 and SH2D6. The identified transcript showed significantly higher expression levels in subjects carrying the deletion compared to control subjects, suggesting that it is not subjected to nonsense-mediated decay and might encode for a chimeric protein. In conclusion, this study suggests the possible involvement of this gene fusion, together with the other previously identified variants, in ASD

    Ischemic heart disease pathophysiology paradigms overview. from plaque activation to microvascular dysfunction

    Get PDF
    Ischemic heart disease still represents a large burden on individuals and health care resources worldwide. By conventions, it is equated with atherosclerotic plaque due to flow-limiting obstruction in large–medium sized coronary arteries. However, clinical, angiographic and autoptic findings suggest a multifaceted pathophysiology for ischemic heart disease and just some cases are caused by severe or complicated atherosclerotic plaques. Currently there is no well-defined assessment of ischemic heart disease pathophysiology that satisfies all the observations and sometimes the underlying mechanism to everyday ischemic heart disease ward cases is misleading. In order to better examine this complicated disease and to provide future perspectives, it is important to know and analyze the pathophysiological mechanisms that underline it, because ischemic heart disease is not always determined by atherosclerotic plaque complication. Therefore, in order to have a more complete comprehension of ischemic heart disease we propose an overview of the available pathophysiological paradigms, from plaque activation to microvascular dysfunction

    Comparison of Protein- or Amino Acid-Based Supplements in the Rehabilitation of Men with Severe Obesity: A Randomized Controlled Pilot Study

    Get PDF
    Background: Weight loss is associated with a reduction in all body compartments, including muscle mass (MM), and this effect produces a decrease in function and muscle strength. Our objective was to assess the impact of protein or amino acid supplements on MM loss in middle-aged men (age 35 kg/m2) during weight loss. Materials and Methods: We conducted a single-site randomized controlled trial (Clinicaltrials.gov NCT05143398) with 40 in-patient male subjects with severe obesity. Participants underwent an intervention program consisting of a low-calorie balanced diet and structured physical activity. They were randomly assigned to 4-week treatment groups: (1) control (CTR, N = 10), (2) protein (P, N = 10), (3) branched-chain amino acid (BCAA, N = 10), and (4) essential amino acid mixture with tricarboxylic acid cycle intermediates (PD-E07, N = 10) supplementation. Results: Following 4 weeks of intervention, all groups showed similar reductions in body weight compared to baseline. When examining the delta values, a notable increase in muscle mass (MM) was observed in the PD-E07 intervention group [MM (kg): 2.84 ± 3.57; MM (%): 3.63 ± 3.14], in contrast to the CTR group [MM (kg): −2.46 ± 3.04; MM (%): −0.47 ± 2.28], with a statistical significance of p = 0.045 and p = 0.023, respectively. However, the MM values for the P group [MM (kg): −2.75 ± 5.98, p = 0.734; MM (%): −0.44 ± 4.02, p = 0.990] and the BCAA group [MM (kg): −1 ± 3.3, p = 0.734; MM (%): 0.34 ± 2.85, p = 0.956] did not exhibit a statistically significant difference when compared to the CTR group. Conclusions: Amino acid-based supplements may effectively mitigate the loss of MM typically observed during weight reduction. Further validation through large-scale studies is necessary
    • …
    corecore