94 research outputs found

    Two-Point Correlations of Sound Pressure in the Far Field of a Jet: Experiment

    Get PDF
    Correlations of sound pressure between two microphones yield substantially more information than single microphone data; hence, they provide useful information about the nature and behavior of jet noise sources as a basis for theory development. The mapping of the space-time correlations of the pressure over a distant sphere enclosing a subsonic jet revealed a number of previously unaccounted for features essential for the interpretation of the radiation field and for the modeling of the flow field

    A ring-source model for jet noise

    Get PDF
    A model consisting of two ring sources was developed to study the direct radiation of jet noise in terms of correlation, coherence, and phase and also to aid in solving the inverse radiation problem of determining the noise source in terms of far-field measurements. The rings consist of discrete sources which are either monopoles or quadrupoles with Gaussian profiles. Only adjacent sources, both within the rings and between rings, are correlated. Results show that from the far-field information can be used to determine when the sources are compact or noncompact with respect to the acoustic wavelength and to distinguish between the types of sources. In addition, from the inverse radiation approach, the center of mass, the location and separation distance of the ring, and the diameters can be recovered

    Optimum shape of a blunt forebody in hypersonic flow

    Get PDF
    The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow

    Measurements of acoustic sources in motion

    Get PDF
    Results of the far-field pressures measured from three different types of moving sources are presented. These acoustic sources consist of a point monopole, a small model jet, and an aircraft. Results for the pressure time history produced by the point source show good agreement with those predicted analytically. Both actual and simulated forward motion of the model jet show reductions in noise levels with forward speed at all angles between the source and observer. Measurement with the aircraft over both an anechoic floor and over the ground yields a method for evaluating the transfer function for ground reflections at various angles between the moving aircraft and measurement position

    Simulation of the fluctuating field of a forced jet

    Get PDF
    The fluctuating field of a jet excited by transient mass injection is simulated numerically. The model is developed by expanding the state vector as a mean state plus a fluctuating state. Nonlinear terms are not neglected and the effect of nonlinearity is studied. The results show a significant spectral broadening in the flow field due to the nonlinearity. In addition, large scale structures are broken down into smaller scales

    Stability and control of compressible flows over a surface with concave-conves curvature

    Get PDF
    The active control of spatially unstable disturbances in a laminar, two-dimensional, compressible boundary layer over a curved surface is numerically simulated. The control is effected by localized time-periodic surface heating. We consider two similar surfaces of different heights with concave-convex curvature. In one, the height is sufficiently large so that the favorable pressure gradient is sufficient to stabilize a particular disturbance. In the other case the pressure gradient induced by the curvature is destabilizing. It is shown that by using active control that the disturbance can be stabilized. The results demonstrate that the curvature induced mean pressure gradient significantly enhances the receptivity of the flow localized time-periodic surface heating and that this is a potentially viable mechanism in air

    Effects of nozzle design on the noise from supersonic jets

    Get PDF
    The aeroacoustic supersonic performance of various internal nozzle geometries is evaluated for shock noise content over a wide range of nozzle pressure ratios. The noise emission of a Mach 1.5 and 2.0 convergent-divergent (C-D) nozzle is measured and compared to convergent nozzles. Comparisons are also made for a Mach 1.5 conical C-D nozzle and a porous plug nozzle. The Mach 1.5 conical C-D nozzle shows a small reduction in shock noise relative to the shock free case of the Mach 1.5 C-D nozzle. The Mach 1.5 C-D nozzle is found to have a wide operating nozzle pressure ratio range around its design point where shock noise remains unimportant compared to the jet mixing noise component. However it is found that the Mach 2 C-D nozzle shows no significant acoustic benefit relative to the convergent nozzle. Results from the porous plug nozzle indicate that shock noise may be completely eliminated, and the jet mixing noise reduced

    Response of High Subsonic Jet to Nonaxisymmetric Disturbances

    Get PDF
    A model of sound generated in a high subsonic (Mach 0.9) circular jet is solved numerically in cylindrical coordinates for nonaxisymmetric disturbances. The jet is excited by transient mass injection by a finite duration pulse via a modulated ring source. The nonaxisymmetric solution is computed for long times after the initial disturbance has exited the computational domain. The long time behavior of the jet is dominated by vorticity and pressure disturbances generated at the nozzle lip and growing as they convect down-stream in the jet. These disturbances generate sound as they propagate. The primary non-axisymmetric effect that we simulate is that of a flapping mode where regions of high and low pressure alternate on opposite sides of the jet. The predominant feature of this mode is the appearance of relatively large deviations of the pressure from the ambient pressure on opposite sides of the jet and the convection of these regions downstream. We illustrate flow field, near field and far field data. Important nonaxisymmetric characteristics of the near and flow field disturbances include roughly periodic pressure elevations and depressions at opposite values of the azimuthal angle psi. These correspond to pressure disturbances propagating in the axial direction. The azimuthal velocity exhibits a sinusoidal dependence on psi with similar roughly periodic disturbances. For every azimuthal angle psi, the jet radiation peaks about 30 deg. from the jet axis, however there is now a pronounced dependence of the far field radiation pattern on psi

    Boundary layer transition

    Get PDF
    The boundary layer stability, its active control by sound and surface heating and the effect of curvature are studied numerically and experimentally for subsonic flow. In addition, the experimental and flight test data are correlated using the stability theory for supersonic Mach numbers. Active transition fixing and feedback control of boundary layer by sound interactions are experimentally investigated at low speed over an airfoil. Numerical simulation of active control by surface heating and cooling in air shows that by appropriate phase adjustment a reduction in the level of perturbation can be obtained. This simulation is based on the solution of two-dimensional compressible Navier-Stokes equations for a flat plate. Goertler vortices are studied experimentally on an airfoil in the Low Turbulence Pressure Tunnel (LTPT). The flow pattern was visualized using the sublimating chemical technique and data were obtained using a three component laser velocimeter. The effect of curvature on swept leading-edge stability on a cylinder was numerically studied. The results suggest that transition is dominated by traveling disturbance waves and that the waves with the greatest total amplification has an amplitude ratio of e sup 11. Experimental data from the quiet supersonic tunnel and flight tests are analyzed using linear compressible stability theory

    Low-disturbance wind tunnels

    Get PDF
    During the past years, there was an extensive program under way at the Langley Research Center to upgrade the flow quality in several of the large wind tunnels. This effort has resulted in significant improvements in flow quality in these tunnels and has also increased the understanding of how and where changes in existing and new wind tunnels are most likely to yield the desired improvements. As part of this ongoing program, flow disturbance levels and spectra were measured in several Langley tunnels before and after modifications were made to reduce acoustic and vorticity fluctuations. A brief description of these disturbance control features is given for the Low-Turbulence Pressure Tunnel, the 4 x 7 Meter Tunnel, and the 8 Foot Transonic Pressure Tunnel. To illustrate typical reductions in disturbance levels obtained in these tunnels, data from hot-wire or acoustic sensors are presented. A concept for a subsonic quiet tunnel designed to study boundary layer stability and transition is also presented. Techniques developed at Langley in recent years to eliminate the high intensity and high-frequency acoustic disturbances present in all previous supersonic wind tunnels are described. In conclusion, the low-disturbance levels present in atmospheric flight can now be simulated in wind tunnels over the speed range from low subsonic through high supersonic
    corecore