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SUMMARY

Ar analytical model consisting of two ring sources is developed to

study the direct radiation of jet noise in to ms of correlation, coherence,

and phase and also to aid in solving the in %,erse radiation problem of

determining the no i se source in terms of far-field measurements. The rings

consist of discrete sources which are either monopoles or quadrupoles with

Gaussian profiles. Only adjacent sources, both within the rings and between

rings, are correlated. Results show that from the far-field information one

can determine when the sources are compact or noncompact with respect to

the acoustic wavelength and distinguish between the types of sources. In

addition, from the inverse radiation approach one can recover the center of

mass, the location and separation distance of the ring and the diameters.

INTRODUCTION

This paper addresses a solution of the direct and inverse problems in

the radiation of sound from raidomly fluctuating sources on two rings. This

effort resulted from the fact that even a well designed experiment cannot

be free of ambiguity and as such it is shown that a parallel study using a

model is essential in minimizing the experimental uncertainties. In addition,

the recovery of the unknown source distribution on a .jet is mo re easily

obtainable from an analytical model, which is by far a superior tool th,=n

from the measurements.

The approach utilizes space-ti;ie correlation of the far-field sound which

clearly provides more information of physical importance than a single point

•	 data. The first theory and experimental work on two point correlation from a

jet were reported in references 1 to 3, and for the inverse approach in

references 4 and 5. Several other papers have been written discussing the

f
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recovery of the unknown source field in an application to the jet noise

problem. The most recent ones are given in references F to 10.

Conceivably, there are n,any possible ways to utilize the radiation

data to yield some information about the source field. In general, however,

the common difficulty in dealin g with inverse problems in physical sciences

lies in the fact that they are ill-posed in liadamark sense (ref. 11). The

present approach was designed to fit the physical problem under consideration;

that is, treating the direct and inverse stochastic problem in a uniform

media for jet application.

'	 The first part of the analysis contains the direct approach and numerical

results on two ring sources. The sources in the rings are random and coupled

With Gaussian profiles. To better distinguish the type of singularities,

two types were used: (a) random monopole and (b) random quadrupole. The

second part of the paper contains the inverse approach accompanied by the

numerical results and the description of the method to determine the basic

geometry with compactness and identification.

ANALYSIS

and, perpendicular

r of discrete sources

have different radii,

rings are random in

within the rings as

The source model consists of two rings, centered on

to the jet axis. Each rind is made up of a finite nuribe

which may be either monopoles or quadrupoles. The rings

simulating the spreading of the jet. The sources in the

time with Gaussian profile. Only adjacent sources, both

well as between rings, are correlated.

In order to investigate the phase effects arising from different types of

sources, two types of sources are used:	 (a) random monopoles and (b) random

quadrupoles.
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The variables in the model are the number of sources in the rings, 	 I

distance between rings, and ring radius. The sources can either be real or

complex. A simple interpretation for complex sources in the direction of

the jet can be given in terms of convection effects. The sources, however, 	 ?

can also be interpreted as the Lighthill sources, t'lat is, the sources of an

equivalent medium at rest.

A. Direct Radiation

The geometry of the mode' is given in figure i. The symbol gi.j(t)

denotes the source placed at an angle 
m 
	 in the i-th ring with

^j 
i,
	 - 1)A, j = 1 . . . N and A = 271 /N. M is the number of sources

which are equally spaced over the rings of radii a 	 for i = 1, 2. The

rind with radius a 2 is larger than the ring with radius a l . The two

rings are placed at distance Z, and Q 2 , respectively from the exit of an

ideal jet.

Position	 Strength

x
- ---- y	 z -- - --

1st Ring	 S1 ,j(tit	 al cos 0 i	 a1 sin 0j )	 Q1,j(t)

2nd Ring	 S2,j(Q2,	 a 2 cos ^j ,	 a2 sin m	 g2,j(t)

Lk denotes the far-field position vector of the field points with k = 1, 2.

In spherical coordinates, L1(ri, 1)
1 1 

1̂ 1 ) and L2 (r 2 , A 2 , 1D 2 ). we set

r 1 = r2 = r, in which case the distance between a point on the rind and a

point in the far-field is given by

L I	 I

4 -+*
,.....,.....,,,.... 	 ti-	 ^......^.,...^
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Il. k - S i j l =	 r2 + 02 + a2 - 2rv
i
 cos qk - 2ra i sin A k cos(^ j - It

(2)

r - E  cos 0k - a  sin © k cos(^ j - ^k)

We denote the self correlation of the random source by Q 1 (T) and Q 2 (T).	 -

Therefore,

p2 < g1,j(t)g1,J(t + T) > = Q, (T)

p2 < g2,j(t)Q2,j(t + T) 	 Q2 (T)

We assume that only the adjacent sources are correlated:

0 2 < gl'j (t)g l ^ k (t + T) > = Q1,1(T)LI1,IJ -kl]

p2 
< 

g2,j(t)g2,k(t 
+ T) '	 Q2,2(T)111,lj-k'j

y

102 < 
g1 ' j(t)g2, j(t +

2

p < g1 ,j(t + T)g2,j

p 2 < g l,j (t)g 2,k (t +

p2 < g2,k(t)g1,j(t 
A.

T) > = Q1,2(T)

(t) > = Q1,2(-T)

T) > = 
Q1,2 (T) ^ l,lj-kl -

T) > = Q*1^2(-T)
 161,Ij-kJ

I

11

We implied that q i'0 = q
i,N 

and q
i,[1+1 ` 

qi,l. Note that Q 1 , Q21 Q 1,1 and

Qe,2 are even functions of T.

dw
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The pressure 
Pk 

clue to source S i,j is

^ L k - Si	 ^
P k = 41'1 t - — 

co

	
)/ILk - Si.ji

=where g i,j (t)	 qi,j'd	
The time derivative is used to convert into

H

unit of pressure. The far-field cross correlation function is:

2	 N

<p 1
(t)P2	

0

(t 
+ T)' _ ► 2 < F	 F ci i , j	 t - L1	 5=^^-_	 ! L 1 - Si ,j

i=1 j=1 

2	 N t + T - 
^L2 - S k,m l 	 t

k=l m=l 
q k,m	 co	 L2 - Sk.ml

- —^

2	 N
F	 F 6ilj(t)

2	 N
y	 yqk,m	

(t + T	
- ui,j,k,m/ 	

(3)
r = 1i =1	 j k-1	 m=1

wnere	 ui,j,k.m -	 -IL 	 - Si 
,j 

I	 + JL2	 - Sk,ml l	
co

= 1[ci	 cos 0,	 + a i sin 01 cos($	 - sl 	 co

[Qk cos , + a  sin 02 cos(tm 	-	 4)2 )]^	 co	 (4)

1. Rings with monopoles.- The far-field cross correlation for monopole

sources can be written as follows

2	 2 2
< p l (t)p 2 (t + 1 )	

_ - !"^ ^ R1,2(^) 	 (5)

I



R 1 ,	
=	 (,,,)y eic^ul ,J ,l ,J

2N)	 Q1 
1

Uncorrelated sources
on the first ring

i

1

1

+ Q2(w)y eic^u2,J,2,J

1

Uncorrelated sources
on the second ring

*
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where

N	 N

R 1.2 ( ^ ) 	 J ., 1 Q 1 	 "Ii.1j) + j-1 IQ 1 11 
(T	 j

'l j ,l .J+1) + Q 1'1 (T -
 11lj,l,j-1)

N	 N	 /
+ F 1 Q l,2 ^T - 

u lJ,2J) + JF1 Q1,2IT - u l j ,2, j+ 1) + Q1^2It - ^'1J,2,J-1)
j	 `	 \	 \

N	 N
+F l Q 1 ^ 2 r-T + u 2J ^ 1j 1 + j }

1 
IQ1,2(T	 2j ,1,J +1) + Q 1,2( T + u2j.l,j-1

)I
J	 `	 J

N

	
j , 1

I+	 Q2 (T - u 2J, 2J) + F Q2,2 (T - 
"2J,2,J + 1) + Q 2,2(T 	"2J,2,j-1)

We make use of the relationship

< q (t) q (t + T ) > = dT < ^(t) q (t + T) > = - r < q (t) q (t + T ) >

d 2	 1
—^ < q (t) q (t + T) > _ - dd	 Q(t)	 (6)
dT	 dT

The Fourier transform of R 1,2 1 ,() is

v

+ 	 N eiw"l , j , 1 ,j+l + ei"'I'l , j+l ,1 ,j
	

Correlation between

S 1 , j ' S1 ,J+l
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+ Q2,2(`'')N eiw1'2.J.2,JO + e""2' J +1'2'J	 Correlation between
1	 S2,J' '2,J+1

N iwo	 M iwu

+ 
01,260) y e	 1 .J . 2

+J + Q1,2(-'Oy a	
2'J'1'•i	 Correlation between

^	 1	 S1. J ; S2 
J

#	 N	
iwu1,J,2,J+1	

,*	 ^l	 ^wu2.
J +1.1 .J	+ fll'2(w) 

1	
e	 + Q 1 ^ 2 ( -w) r

	

1	 1	 51..1' '2.J+1

,1,2	 "	
i``'ul,j,2.j-1 + R1'2^_w) } e iw11 2,,1-1 ,1 .J	 Corre l :,Lion between (7)

	

1	 1
	

Ili • S2.J-1

For the computation of the cross spectral density,-(r 2/02w2 )R 1.2 (w), one

needs the six correlation functions of the sources; i.e., Q 1 9 Q29 Q1.1'

Q2,2, Q
1,2 . and Q*1.2 or their Fourier transforms.

For the purpose of computing the cross correlation R 1,2 (T) let us

	

assume that	
Q 1 (`) ' Q2 

(T), Q
1,1 (1) ' 

Q2,2(T), c11.2 (T), and Q
*
l.2 (l)	 have

Gaussian form wh'ch has frequently been used in the past (refs. 12 and 13).

Q1(T) _ e-(J1T)
2

2

Q 2 (T) = e

r	 _ 1
	 2 IT - ^TT X11 2 + e - •̂ 2 (r +	 J112

9 .
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e_Y2\T

n	 2
R	 2)

2
-Y2+

n

^2) 21
Q	 (T)2.2 = + e

Q	 (T) 1 -y 1 ' 2`T N	 ^'i,2 J e -Y 1 ' 2 T+ N ^'1'2 I
1,2 2

Q*	 (T) -
2

e-
Y1 ,3(T

\

it	 ll2
- N 

X1,3 /
2

+ E
-Y 1.3

r_
T + N

2
X1,3

(8)1.2

The constants Y's control the rates of decay while i,'s	 represent the

time shifts. The Fourier transforms of the Q's	 are then given by

2w

?Y
(w)	 = 1

e	
1

2Y 1 ►/n

w 2

2Y
Q2 (w) 	 e	 2.

2Y2

Q 1 ^ 1 (w) = Q l (w) cos ( N 01)

Q 2,2 (w) = Q2 (w) cos ( N u'2

w 2

2Y
Ql	

ZYl ,23n 	 \
^ 2 (w) =	 1-- e	 l'2	 cos (N 01 2)

	 (q)
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/-ff

_	 to	 ?193) 

	 c►+n
cos ( N 

q '1 .3)

•	 In accordance with our assumption of axisynrnetry, we set $ 1 - 00,

and chose the fixed point to he at 0 1 = 90°. The computation of R l 20)

in the meridian plane with ^^` = O° and in the azimuthal plane with o 2 = 900

are shown in figures 2 and 3. The number of sources chosen in each ring

is 16. 'he location of the rinds are at R 1 - 20 and e 2 - 5D, 0 is the

diameter of the ideal jet taken = O.OF25 m corresponding to the diameter

of the experimental jet. In addition, the spreading an g le connecting the

two rings of radius a  = .846D and a 2 = 1.36D was chosen to be 10°

corresponding to a jet spreading half angle.

The broadband cross correlation fkinct`on (fig. 2) shows the decay

and the shift of the peak correlation away from T = 0 with the increase

in separation an+lle from 
(12 

from o f = 90°. The same is observed in the

experimental data (ref. 2). The azimuthal broadband cross correlation

function, figure 3, shows two results at S' 2 = 1130° corresponding to two

different decay rates. One is for a slow decay rate; the sources are compact

as is shown by the fact that the cross correlation peak at zero time delay.

This is also true for s2 < 180 0	The second result is for fast decay

rates; the peak cross correlation occurs at a time delay different from

zero, indicating that the sources are not compact with respect to the

acoustic wavelength. In this example, the noncompactness contribution

became noticeable only at large separation an g le as the cross correlation
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approaches 180° separation in a broadband sense. Also, in t^ c;;periwental

results' Oe peak correlation occurs at T / 0 at large separA tior, anqle

It - 01 showing the noncc,:-ipactness of the sources. The fact that the

broadband cross correlation is even in T indicates that statistically

the sources ire symmetrically placed with respect to the axis of the jet.

The phase of the far-field pressure in the meridian plane is shown in

figure 4. Results are plotted in terms of the frequency (,% for A2

ranging from 80° to 0 0 . Note that the phase goes to zero withh the frequency

for all angular separations. This proves that the sources are monopoles,

since no net cancellation occurs at any one angle more than at any other as

w goes to zero. Also, note that the initial phase slopes are constant at

low w but varying at higher w. This i; an indication that at lower fre-

quency the radiating field pattern is nearly uniform, while at higher fre-

quencies it is not because the sources are noncomnact. From this figure,

however, one cannot deduce a priori that the sources are noncompact beyond a

certain range of frequencies, without first establishing the phase due to

geometrical effects. This problem will he discussed further as part of the

inverse problem in section B. In addition, the pattern of the phase varia-

tion with w and © resembles the measured phase (ref. 2), but with one

important difference; namely. that in the experiment the phase for 02 less

than 50 0 is nonzero as the frequency approaches zero. This is evidence that

the sources in the experimental jet are not monopole. This poil.t also will

develop further when comparison is made between the phas_ of monopoles and

quadrupoles in section A-2.

'Results not yet published show that by filtering out the lower frequency

on the original broadband spectra, the peak correlations shift near'.y

symetrically away from T = 0.
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2. Rings with quadruples.- The far-field quadrupole of the pressure P

in terms of the far-field angle 0 and 0 and distance r are obtained as

linear combinations r;f the following

232 P	 -	 - ^ (t - r-) cos 2 n
dx	 c r dt \	 co

0

d2

&X-2-y- P
	 cos 0 sin 0 cos 4A

2

d
P 	 sin  H cos 2 m

dy

d2
dxdz P _
	 sin 0 cos 0 sin $

2

Tydz P	 sin  a cos ^ sin m

2

di- 

P	 sin2 0 cos 2 (D	 (10)

where x = r cos A; y = r sin 0 sin 4,; z = r sin 0 sin ^V

The total contribution of a quadrupole becomes:

3
c-

	

it It	 o 
ir' )
 a ll cos 2 0 + a 12 cos © sin 0 cos p + a " sin  a cos2

o	 \

•	 + a 13 cos 0 sin p sin s + a23 sin  0 cos 4) sin s + a 33 ,in 2 0 sin  fi

P
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1	 _	 d3	 r	 ,
--^ t -	 F(e ^)	 (11)

c	 t (	 cr d	 o

We will assume that the coefficients a
ll • a 12 , . . . • a 33 

are

N	
independent of t for all quadrupoles on the rings.

We make use of the following relationship:

 [

p2 < d3

3 
(t)	

d	
(t + T) 	 d

6 
Q(T)	 (12)

dt	 i j

	 33]

dt 2J	 dt

The coefficient a l . . . . a33 in F(e, Q) will be adjusted to match

with experimental results. The general form of the quadrupole correlationF 
function, equivalent to equation 5, for the monopole becomes:

< P l (t)P" . 	. ) > _ -	
d
__6_ 

R1 
.2(T)	 F(019 v l )F(O 2 , m2 )	 (13)

P	 c' I d r

where R 12 (t) is defined in equation 5.

Computation from the quadrupole model of the phase a and

IR1,2(w)J/Rl,l("0 using the same meridian plane of the previous model is

shown '-e figures 5 and 6. The phase of the quadrupole differs from that

of the monopole by 180 0 for e2 < 45° as the frequency w goes to zero.

Therefore, the type of singularities radiating sound in the far-field are

dis-inquishable by the behavior of a as w tends to zero. At higher fre-

quencies one cannot, in general, recognize the type of singularities because

of their mutual interaction.
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The coherence function for the quadrupole model is shown in figure 6 Tor

F 4 !

..

four differr_n.t frequencies. It is clear that at lower frequencies the pattern

of the quadrupoles is similar to the measurements made for an axysymmetric

jet in reference 3. Indeed the phase together with the coherence function

Shows what types of quadrupole (namely the coefficients a
ll ' ' ' ' a33)

dominate. As the frequency increases the coherence function decays due to

randomness.

The data shown in the figure have been obtained when all the correlations

function 0
1' Q2 ' ' ' ' Q 12' Q*

1? are even in t. It is known, however,

that at least in the plane of the jet along the direction of flow the source

cross correlation function 
Q
12' Q1? are not even because of convection

effects. This additional effect will not be discussed at this time. The

present paper attempts to interpret the results in this simplest form, that

is, to study the phase variation due to geometrical effects and compactness

for different types of singularities.

In order to study further the relationship between the quadrupole model

and the measurements, comparison is also made of the azimuthal cross power

spectral density. Only the real part is used since in the model the imaqinary

part is very small at relatively lower frequencies. The calculated real part

of the cross spectral density taken at 
o1 

= () 2 = 90°, and y l = 0° is shown

in figure 7. The behavior is consistent with the measurements, indicating

the quadrupole model may be satisfactorily used to model the singularities

in a jet.

___... _	 ..
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B. The Inverse Radiation Problem

A question naturally arises regarding the possibility of using acoustic

radiation data to infer the characteristics of the source distribution.

Although the difficulty in dealing with this, and other types of inverse

problems in physical sciences, lies in the fact that they are in general ill-

posed. there may conceivably be some way to utilize the singularity model

developed together with the measured radiation field to study Vie inverse

relationship.

Since there are many parameters in the model solution, we examine the

solution in the meridian plane, that is 4 ,
1
 = 411 = 0° and 0 1 = 90°.

Equation 7 reduces to:

ikoelcos 
02	

11	 -i cos Sj(A1 + Bl)
R 1 ,2 (w) = e	 Q, (,.o) Y	 e

=1

	

N	 -i(A 1 cos sj - B 1 cos Sj+l)
+ Q 1 (0) }	 e

j=1

+ e 

-i(A 1 cos ;;)j - B1 cos ^ j 1 )

N	 -i cos ^ j (A 2 - B1)
+ Q l  2 ^(") Y e

j=1

H*	 N ' -i(A. 2 cos ^j+l - B 1 cos sj)
+ Q 1 Q2,(-w) Y ^ e

-1

i(A 2 cos ^ 	 - B 1 cos ^j)
+e

a,
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t'	 -ikof2 cos 02	N	 -i cos mj (A 2 - B2)
+ eQ2 (c.,) F e

j=1

	

N	 i(A2 cos m  - B 2 cos ^j+1)

j=1

-i(A 2 cos ¢ i - B
2 
cos tj-1)

+e

N	 -i cos Q.(A	 - B )

	

+ Ql,?(w)	
e	 1	 2

j=1

*	 N	 -i(A 1 cos ^j - B 2 cos mj-1)

	

+ Q 1 ^ 2 (a,) }	 e
j=1

-i(A 1 cos $j - B2 cos ^j _ 1 )1 (14)
ie

where

ko =	 Ai = -a i k o , B i = -a i ko sin 0 2 ; i = 1,2

0

The second step consists of trying to simplify the above equation by observing

the behavior in three domains: 	 i) ko a i « 1, ii) k 
o 
d 1 - i, and iii) ko a i >> 1

1. Geometrical center of the singularity koa i << 1.•- At lar,; p wavelength

ii the limit as	 0, A i , 
B 
	 both are « 1, the first su:. in equation 14

reduces to
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-ik	

Q

	

oeI 
cos 

q2	
N	

1(k2Je	 (^.) N + i(A1- Bl)	
cos ^Y0oai)^-1

-ik e. cos e

	

=e	 o1	 2 ,I CIO N+0(koai)^

N

because	 cos	 = 0

.l =1	
j

llsinn a similar approa;.n for the remaining sums in equation 14 and omitting

terms of 0 ((K 
o 

a  i) 2) we have

	

-ik l cos 
()2
	 -ik Q cos

R1'2GO = N 
91(w)e	

o 1	
+ g2(w)e	

o 2	 02)	
(15)

where

q l (w) = Q l ( w ) + 2Q1,I(()) + Q 1,2 ( -w) + 2Q, 2(
-W)

^ 2 (c.i) = Q, (w) + 2Q2,2 (w) + Q l 2 ( (" ) + 2Q^ ,2 (w)	 (16)

If we also assume k 0 Q.j << 1 and neglect the second order term we have

2r

-r2 R
1,2 (w)	 N[g l (w)(1 - iko 9 1 cos 0 2 ) + g 2 ((0)( 1 - iko Q 2 cos 02)1

-i ko cos A211
N[d l (w) + q 2 G ),e

2	 ic^lw
JR 1 ^ 2 'w)le	 (17)
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where

tlgl(w) 
+ Y 2(w)	

l
A = -	 a =	 cos A A, R 	 (w) ( = N 	 + q (w

q1(w)+g2(ul)
1 	 2	 1 ,2 	 POW)	?dJ

The far-field phase a l is independent of w corresponding to the geometrical

center of the source (or center of mass). It is the ohase due to the geo-

metrical position between sources and far-field measurements. When A = 0,

a 1	is zero.

The magnitude IR 1,2 (w)l as well aS A are available from measurements.

The behavior of A is shown in the sketch. The minimum value corresponds to

the fixed microphone located at 0 1 , the center of the sources.

A

01

Sketch - Behavior of the

geometrical center for fixed
far-field angle differences.



t

r

18

In fact, the results show that one can eliminate the phase resulting from

the geometry of the orientations. A numerical example is shown in figure 8

where the phases due to monopoles are evaluated with respect to the geometrical

center. When the phases are evaluated differently, for example, with respect

to a fixed point in the plane of the jet (0 	 90° shown in fig. 4), the

results are radically different than that of figure A. From the geometrical

I,	 center the phase at low frequency is zero as predicted by equation li. The

remaining phases as the frequency increases are due to noncompactness of the

source, i.e., ring separation, ring diameter, and due to the spacing between

sources on the ring.

`	 Equation 17 describes the geometrical center only and cannot provide

additional information than what has already been discussed unless

n,(w) = q 2 (w); in general, however, this is not the case. The geometrical-

center result per se is important,e^pecially from the measurement point of

view, because the far-field distance can be taken from this center rather

than using other center references. In so doing, the interpretation of the

results will be considerably simplified. To obtain additional information

regarding the source field, from far-field measurements, one can expand the

exponentially functiin by retaining terms in w 2 rather than in w only.

Such an approximation will he valid for k o a i 	1 and is carried out in the

next subsection.

2. Ring location for k oa i _ 1.- Let us expand equation 14 in w and

retain terms of order w2 or k  a i `'. The first term in equation 14 contains

f) 1 (w), can be written



I
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N

Q 1 (w) Y	 1 -	 cos m j [A I w ) - A2(w)1?.
j l 	J

= Q 1 (,.,)N - P1 
ko2

where

2Q
1
 (w)Na

S' 1 =	 4 (1 - sin ©2)2

since	 Y Cos t ^j = 
2 

F 0 + cos 2 j)
j=1	 j-1

Following the same procedure for the additional seven terms in equation 141

one obtains the followinq equations for the cross spectral density:

2	 -ik 2 cos A - Q (I) k 2

o
R 1  2 (w)	 q 1 ((,))e	

o 1	 2	 0

-ik	 2Q cos A - 0(2)k 2
+ g2Me o 2	 0	 (18)

where

00) = Pi (w) + 2521,1 (w! + "l 2 ( -w) + 2f2^  2( -w)

Q (2) = 02 (w) + 2Q2,2 (w) + 52 1
 

2 (w) + 252 ^2(w)

Q	 (w)Na2

Ql,l(w) = 1
,14 	 (1 + sin 2 02 " 2 cos A sin A2)

Q 1 2( -w)N	
2

5`1 ,2 ( -w) _ -- ' 4	 (a2 - a 1 sin 02)
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Q^2( -w)N 
(a2 +

ai sing 0 2 - 2 cos Aa l a 2 sin 02)^*	 ( -^) s

L
02)2

(w)2

Q2(^Na?
(1	 -	 sin

Q 2 2(^,,)a2N sin2 02)2'

n2,2(`')
= ^^^ 0 +

( w )s:* ` 
Ql2	

(al + a2 sin 2 t)	 - 2 cos A a l a 2 sin 0`1

1,2 4

and	 Q	 (,, ► )N	 )2
S1	 (^)	 - -- ( a 2 - a l sin 02

1,2

Equation lA can be written as

r	
1.2	 o2 ,	 - -ik o t l cos 02 ^(0) (t) - 1 

(kal 
) 28( 2 ) (,,,)

JR	 ,^)	 e	 [ 1	 4
^ 
P

	

	
ll-ik o c 2 cos 0 2 R(0) ^.,) - 1 (k a )^R2L)G,

+ e	
l 2 (
	 A	 o 2

where

R( 2 )( w )	 ( Q 1 (,) + 2Ql,l(,,,),(1 - sin 0 2) 2
1	 l

( ) + a 12 Q* (,,x)14 1 - cos 2N sin 02)
Q 1 1 `` 	 a	 1, 2	 J\
C 

(19)
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+
 [

Q 1 ^ 2 (-w) + 2Q^ ^2( -1. 1 )

J

(,a

a? - sin 02 
2

L 	 1

R (2) (w)	 I Q2 GO + 262.2 (w)1 (1 - sin 02)2

+ [Q2,2 (w) + a 1 
Q1,2(w)J4 1 - cos 

N 
sin o2

2

1
+	 Q 1.2 (w) + 26 1 2(1I	

al
2 - sin 02 2

Comparisons have been made between the approximation (eq. 19) and the exact

solution (eq. 7) at 01 = 90° and 0 2 = 30 0 for both phase and absolute

value of R. The comparison is shown in table 1 s :r N = 16. The phase up

to w = 50,000 rad/sec varies within 2°; it .tarts oscillating beyond

w = 20,000. The magnitude IR 1.2 (w)j varies about 42 percent at w = 50,000,

corresponding to a 1 ko of 3.0, while at w = 30,000 the error in magnitude

is only 5 percent corresponding to a l ko of 1.82. Therefore, the approximate

solution is useful up to about ka 1 - 2.

Equation 19 thus contains information not only on the separation distance

of the two rings (k 2 - 9. 1 ) but also on the radius of the rings a 1 and a2.

This equation permits the determination of the distance between rings in terms

of the compactness behavior of the phase. Since the distance between (Q 2 - el)

is usually larger than either the radius a 1 or a 2 , the first case of non-

compactness as the frequency increases occurs at k
o (Q 2 - 

11) cos 0 2 = n,

when X/2 = Q, 2 - R. 1 ; since ko = 27/a. Equation 19 can be written as
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W cx°.	 Exact n', Approximation

^R 1.2 (w)

Exact

R1,2(w)

Approximation

21,1)43

a l ko

.06

a 2 ko

.097

( e2-Q1A

3.61,000 12.94 11.04 11.493

3,000 39.11 39.11 80,706 80,705 .18 29 1.0

5,000 65,60 65.60 89,513 89,507 .30 48 1.7()

7,000 90.90 90.89 116,300 116,280 .43 68 2.51

10,000 125.20 125.15 123,622 123,519 .	 6 97 3.6

15,000 137.084 136.56 48,901 49,353 .913 1.5 5.38

20,000 123.47 124.37 63,450 63,695 1.2 1.9 7.18

30,000 207.42 206.83 14,248 13,584 1.82 2.91 10.0

40,000 284.56 286.52 483 441 2.4 3.9 14.36

50,000 367.49 367.89 5 3.5 3.0 4.8 17.9

Table 1.- Comparison between exact solution and approximation in the
limit of koa i < 1, at 0 1 . 90°, 0 2 - 300.
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r2	 -ikocl cos e 2 	-ikoe2 cos 02
-,f R l .2(w) - R  GO 	 + R2(!,,)e

s e -iko ¢ l
 cos 02I^lm; R w)e-ko(e2 -V

l ) cos P2

 2(

-iko c l cos A2

Q1

[1	 2

R

A(w)e	

Q 2	 Ql	
- n < 02 < n

where

R l (^.,) = R^ 0) - 4 [ko ^ lg  (^,,i1 2 P,^ 2) (w)

R 2 (w) = R2^) - 4 [k0 g 2 (w), 2 R22)(w)

and

R l (w) - R 2 (w) = A(w)ei6((.')

The phase B is not equal to zero when Q 12 and Q12 are not even function

Of T. This is a consequence of the non-zero convection velocity of the flow.

For real R
1 
(w) and R2(w)

0	 Rl (w) > R2(i
B =	 (21)

71	 Rl ((") -1 R2(^^)

(20)

L_ j
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The phase of the cross spectral density a is

a • - - l
	 n + g

It nnw becomes

A	 A

a	 Q	 R	
n R I M R2(w)

?	 1

a is undefined when R l (w) = R2(w)

R

n = n 

+(T2n
	 R Gj) <L(w)

 1

Computational results of the phase (i in terms of 
k0(`2 - ¢

1 ) cos a 2 . are

shown in figure 9 by equation 14. The phase at all angles 
02 

intercept at

f

k0(Q2 - F l ) cos " 2 - n with a = st
	

1 
Q

2	

11	 since R l (w) -, R 2 (u^)-	 This

1

result thus provides additional informatio;, toward unraveling the details of

the source distribution from far-field measuremen ts.

3. R_ia radius k a	 1.- In order to simplify the higher frequency,

expression for larqe k o a l we use the following approximation for large N

e
-ik0a i cos ^j	

1	
Tir a -ik0 a i cos S

J-n

N fr  -k o a i Cos m
n	 e	 d s = PJJ 0 (k oa )

0

s
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Since we have N n 16 or lar(ter, one can employ this approximation and	 !

equation 14 reduces to

-1k a cos 0

R1.2(w)	
Ne	

o 1
	 '1[6, (w)  + 201j (w) Cos (B,A^o (A, - 61)

+ [6 1,2
( -w) + 2Q*1 .2 (-„,)cos(A 2A),Jo (A 2 - 6 1 )

tk ¢ cos P	 a

	

+ Ne o 2	 2 1[62(”) + 262(W)cos(62A)] I 1 0 ( A 2 - B,.,)

+ [Q 12 (w) + 2612( w )cos ( B 24o( A l - 6 2 )	 (22)

When koa l _ 1 the power series ex pansion for J0 can be used to recover

the results of the previous subsection.

For high frequencies, i.e.. koai „ 1, we note from physical reasoning

that

e2 - e l „ a i	 t 1

R l 2 (w) reduces to

-ik c	

2
cos 0	 y

R 1 ^ 2 (w) - Ne	
o 1	

[Ql(w) + 2Q 1 (w)cos(6 1 A),•? o (A 1 - B1)
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Since the acoustic enerqy of high frequency decays with distance downstream

from the ,het exit,

0 1 (w ) >> Q2 (w) > 02.2(w)

Therefore we have

-ik Q	 cos faR1.2(w)	
Ne	

o 1	
21Q 

'(w) ♦ 2
Q 1.I (w)cos(B I A) 10 (A I - B I )	 (23)

The maqnitude of the cross spectral density function vanishes when

A l - B I = koa 1 (1 - sin 0 2 ) = vm

where vm is the m-th root of Jo(z)

A plot of the normalized absolute value IR1.2 (w)j /R I,I (w)j is shown in

figure 10. Note that the fist two zeros occur at k 
o 
a 1 = 2.4 and 5.52 when

the magnitude of the f:.ir-field pressure reaches a minimum. At lower value of

k
0
 a, the undulation of the coherence function is die to cancellation

resulting from the matching of the acoustic wavelength with distance between

rinqs. This effect occurs at k oa < 1, a problem discussed previously.

In order to confirm this cancellation effect the numerical results have

been compared with results based on the first four zeros of the Bessel function

of order zero, as obtained from tab l es. The results of this comparison is

presented in table 2.
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k oa I k 
o 
a 

I
w

from table computed rad/sec

2.405 2.403 38,300

5.520 5.520 87,977

8.654 8.653 137,900

11.792 11.790 187.900

Table 2.- Comparison of k 
o 
a 
I 

calculated from zeros of the Qessel function

1 0 (k
0
a) = 0 with results computed fr •.,n the monopole model.

The agreement is excellent, indicating that the coherence function or

the absolute value can be utilized in obtaining information on the source

radius. The radius of the second ring a 2 is generally not directly

available from the absolute value of the far-field pressure, but to improve

the signal one can seaf •ch fir it in the plot of the coherence.

There are also other ways to determine the radius a 2 . One is by

assuming a spreading angle between the two rings based on physical reasoning.

Thus, from the far-field correlation the location and the diameters o f the

rings, is well as the type and compactness of the sources, can be extracted.

The results are given in table 3. 	 In order to better assess the validity

of the approximate solution, additional comparisons of phase and magnitude

values were made for a large range of w.

CONCLUSION

This pa per contains the solution of a direct and an inverse problem

on the radiation of sound from randomly fluctuating sources on two rings.

This work concentrated on obtaining the properties of the signals originating

P



W a a IR12(u)) I IR12(w) I
rad/sec exact approx. exact approx.

50,000 -116.017 -115.989 3.9003 4.0821

60.000 -	 30.875 -	 30.875 ?.6190 2.6448

70.000 54.004 54.004 3.8417 3.8017

80.000 138.863 138.863 1.12398 1.0762

90.000 43.721 43.72.1 5.6892 6.6684

100.000 128.579 128.579 2.0669 2.1127

110,000 -146.563 -146.563 6.9836 7.0143

i20,00o -	 61.705 - 61.705 5.3225 5.2844

130,000 23.153 23.153 8.2173 7.9814

140.000 -	 71.990 -	 71.990 2.2542 2.5394

150,000 12.868 12.868 4.2972 4.3947

160,000 97.726 97.727 7.60<< 7.7301

170,000 -177.416 -177.416 2.9407 3.0221

Table 3.- Comparison between exact and approximate soluti

k oa 1	>1,at 1,2=0°,N =16.

i
t.

28
I f ai
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from a random medium with known statistical properties. From the inverse

radiation approach which utiliies the memory of the received signals

associated with the distortion, several questions regarding physical inter-

pretation of the signals in relationship to its oriqin have been clarified.

In oarticular . the interpretation of data related to phase and coherence

functions permits the establishing of: (1) the center of mass of the singu-

larities, (2) the geometrical shape and size, and (3) the ability to dis-

tinguish one type of singularity from another an6 from it determine the

basic directivity of the different components. In addition, from the signals

one can (4) deduce the distribution of the singularities either when

compact or noncompact with respect to the acoustic wavelength.

The location of the center of mass is in important factor to establish

in an experiment, otherwise Prror can easily result, inadvertently, especially

at those frequencies in which the far-field distance becomes geometrically

limited.

The results presented are mainly related to the meridian plane. Addi-

tional information comes from the simultaneous observations of both azimuthal

and meridiin planes 14ith Q 1,2 (T) taken as an odd function of the time delay

T. This information together with the partial recovery of the functions Q's

will not be discussed at this time.

B 
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