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ABSTRACT 

The active control of spatially unstable disturbances in a laminar, two­

dimensional, compressible boundary layer over a curved surface is numerically 

simulated. The control is effected by localized time-periodic surface 

heating. We consider two similar surfaces of different heights with concave-

convex curvature. In one, the height is sufficiently large so that the 

favorable pressure gradient is sufficient to stabilize a particular 

disturbance. In the other case the pressure gradient induced by the curvature 

is destabilizing. It is shown that by using active control that the 

disturbance can be stabilized. The results demonstrate that the curvature 

induced mean pressure gradient significantly enhances the receptivity of the 

flow to localized time-periodic surface heating and that this is a potentially 

viable mechanism in air. 
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1. INTRODUCTION 

In this paper, we simulate the development of spatially unstable 

disturbances in a compressible, two-dimensional laminar boundary layer over a 

curved surface. The curvature varies from concave to convex to flat over the 

length of the surface. The simulations are performed by numerically 

integrating the two-dimensional Navier-Stokes equations over the surface with 

a disturbance specified at the inflow. The objective is to investigate the 

stability and the active control of disturbances by localized, time-periodic 

surface heating in such a boundary layer. Our concern is with the nature of 

the instability of the time dependent disturbance interacting with the 

curvature induced mean pressure gradient, and with the ability to control the 

non-linear growth. 

The concave part of the curvature is known to be potentially unstable to 

two- and three-dimensional disturbances while the convex part is stabilizing 

as a result of a favorable pressure gradient or acceleration (see Reynolds 

(1884); Liepmann (1943), and Schubauer and Skramstad (1947). The overall 

effect of the surface curvature cannot be predicted a priori, as it will 

depend on the parameters of both the flow and of the di'sturbance. By 

geometrically shaping the surface, it is possible to achieve flow control, 

i.e., reduce the growth of disturbances. A reversion of a turbulent flow to a 

laminar flow is also possible (Narasimha and Sreenivasan, 1979). However, 

this technique has limited application in that it can be optimized only for a 

small range of flow parameters. A potentially less restricted method of 

control for a variety of flow conditions is by active means. Methods for the 

control of the flow are surveyed by Reshotko (1985). 
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The technique of actively controlling the growth of unstable waves by 

localized periodic surface heating was introduced by Liepmann, Brown, and 

Nosenchuck (1982) and by Liepmann and Nosenchuck (1982). The basic idea is to 

introduce a temperature disturbance out of phase from the propagating wave via 

a feedback mechanism and thereby induce a phase-amplitude cancellation. They 

demonstrated that the active control of instability waves using heating strips 

on the wall is an effective method for flow control in water. Maestrello and 

Ting (1985) analyzed this problem using the method of matched asymptotics as a 

"triple-deck" problem. The analysis confirmed that a small amount of 

localized active surface heating can excite local disturbances which increase 

the momentum near the wall and reduce the displacement thickness. This 

mechanism couples the surface heating to the flow. In other recent 

experiments in water, Lynch, Miller, Lewis, and Nosenchuck (1985) successfully 

controlled an artificially induced turbulent spot. In addition, Stuber, 

Dehpanah, and Gharib (1985) controlled the wake of an airfoil in a low 

Reynolds number flow. 

In air, active control by surface heating is more difficult to achieve 

than in water. One reason is that the temperature-viscosity coupling is much 

weaker, thus requiring a higher temperature to impart an equivalent 

perturbation to the flow. It was shown by Maestrello (1986) that the 

disturbance required in air was 10-20 times larger than in water for an 

equivalent perturbation. This is consistent with experimental observations. 

In addition, only the unsteady portion of an imposed temperature disturbance 

contributes to control by proper phase adjustment, while the. steady portion 

tends to destabilize (Schlichting (1968». On the other hand, in water steady 

heating is stabilizing. As far as we are aware, active control in air by 

periodic surface heating has not been achieved experimentally. 



3 

In the above experiments, . there was essentially no mean pressure 

gradient. The pressure gradient introduces a coupling of the mean flow with 

external disturbances (i.e., sound, vorticity or entropy disturbances) that is 

much stronger than in flows with no mean pressure gradient (e.g., Goldstein 

and Cowley (1986». This coupling can induce large changes in the response of 

the mean flow to controlled disturbances, i.e., the receptivity of the flow is 

significantly enhanced. Maestrello (1986) found experimentally that a 

temperature disturbance placed near the leading edge of an airfoil can trigger 

instantaneous transition while a similar disturbance placed over the surface, 

where the pressure gradient is weaker, had a significantly reduced effect. 

Preliminary numerical results of the authors (Maestrello, Bayliss, Parikh, and 

Turkel (1985» confirm the enhanced receptivity of flows with a non-zero mean 

pressure gradient to localized time-periodic surface heating. 

Another means of active laminar flow control is the use of a vibrating 

ribbon. Milling (1981) and Thomas (1983), using a vibrating ribbon placed in 

the boundary layer, were able to delay transition by superimposing Tollmien­

Schlichting waves of equal amplitude and opposite phase from the incoming 

growing disturbance. 

In this paper, we study the effect of a curvature induced mean pressure 

gradient on the growth of laminar disturbances. In particular, we investigate 

the behavior of an imposed disturbance over two concave-convex surfaces with 

diferent heights. On one, the height is sufficiently large so that the 

favorable pressure gradient is sufficient to stabilize a particular 

disturbance. Hence, we have passive control by geometrical shaping. For the 

other surface, the favorable pressure gradient is not sufficient to overcome 

the effect of the unfavorable pressure gradient, thus the net effect is 
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destabilizing. We show that control of this instability can be successfully 

achieved using active surface heating. 

In section 2, the numerical method is described. In sec tion 3, we 

present the numerical results and discussion. Finally, in section 4, the 

conclusions are presented. 

2. NUMERICAL METHOD AND COMPUTATIONAL MODEL 

In this section we present the numerical method and other aspects of the 

computational model. We consider the compressible, two-dimensional Navier-

Stokes equations. In Cartesian coordinates, x and y, these equations can be 

written in the conservation form 

where W is the vector 

+G y 

T (p, pu, pv, E) , p 

(2.1) 

is the density, u and v are 

the x and y components of the velocity respectively, and E is the total 

energy. The functional forms of the flux functions F and G are standard and 

will not be given here for brevity. The system (2.1) is supplemented by the 

equation of state for an ideal gas 

P pRT, 

where p is the pressure, T the temperature, and R is the gas constant. 

Sutherland's law is used for the variation of viscosity with temperature peT). 
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In order to deal with surface curvature we introduce a general, non-

orthogonal coordinate transformation 

~ = ~(x,y) 
(2.2) 

n n(x,y) 

The wall is the curve n = O. Applying the transformation (2.2), the system 

(2.1) is transformed to the new system 

(JW)t 

where J is the Jacobian 

J 

and the new flux functions F and G are given by 

F Fy 
n 

'" - Gx and G 
n 

(2.3) 

The transformed system (2.3) is solved by an explicit finite difference 

scheme using a rectangular (~,n) grid in the computational plane. The 

viscous stresses must be transformed to the new coordinate system. The 

precise form of the transformed system of equations is omitted for brevity. 

Assuming that the wall is a single-valued function of x, described by the 

equation, 

y = f(x), 
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the coordinate transformation used is 

I; = x (2.4a) 

n (2.4b) 

where YT is the top of the computational domain. An additional exponential 

stretching is applied to (2.4b) to increase the grid resolution near n = 0 

where large variations in the solution have to be resolved. The 

transformation (2.4) is not orthogonal near the wall; however, the types of 

curvature considered in this paper are not particularly severe and the 

transformation (2.4) is believed to be adequate. 

The finite difference scheme is a modification of the MacCormack scheme 

making it fourth-order accurate on the convective terms. The scheme is 

second-order accurate in time and is second-order on the viscous terms for 

non-constant viscosity. The fourth-order accuracy is essential in order to: 

a) prevent viscous-like truncation errors on the convective terms from 

artificially decreasing the effective Reynolds number of the 

computation, and 

b) prevent numerical dispersion and dissipation from altering the 

character of the waves which are computed in the mean flow. 

The numerical scheme is described in detail in Bayliss, Parikh, 

Maestrello, and Turkel (1985a). The discussion below will therefore be 

short. The numerical scheme applied to the one-dimensional equation 

F x 
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consists of a predictor of the form 

(2.5a) 

together with a corrector of the form 

(2.5b) 

In (2.5) the subscript i denotes the spatial grid point and the superscript 

N denotes the time level. The scheme (2.5) is alternated with the symmetric 

variant. 

Two-dimensional problems are treated by operator splitting. For example, 

if Lx denotes the solution operator symbolized by (2.5) for the equation 

F , 
x 

and Ly denotes the similar operator for the equation 

then the solution to the equation 

is obtained by 

G , 
Y 

F + G x y 

(2.6) 



8 

The split scheme (2.6) preserves the second-order accuracy in time and the 

fourth-order accuracy in space. In the applications the scheme described 

above is applied to the transformed system (2.3). 

A typical computational domain is shown in Figure 1. We first solve the 

Navier-Stokes equations on a coarse grid using constant inflow data. This 

grid is sufficient to resolve the mean flow but not the unstable Tollmein­

Schliting waves associated with the mean flow. The equations are marched in 

time until a steady-state solution is obtained. This solution is then 

interpolated to a finer grid which is sufficiently fine to resolve the 

unstable Tollmein-Schlichting waves. It is possible that a steady state would 

not be numerically achieved by time marching techniques if the mesh were fine 

enough to resolve the unstable waves. The numerical code is then run with a 

time dependent disturbance specified at the inflow and with the interpolated 

steady state used as the initial condition. The specified inflow boundary 

data is of the form 

W Wo + € real{e
iwt 

H(y») inflow 
(2.7) 

where Wo is the interpolated steady state, w is the frequency, H(Y) is a 

complex solution of the Orr-Sommerfeld equation for a given boundary layer 

profile at the specified inflow Reynolds number, and € is used to adjust the 

amplitude of the fluctuating disturbance. The profiles H(y) used here were 

obtained from a program developed at NASA Langley Research Center by J. R. 

Dagenhart. 

The numerical treatment of the boundaries involves extrapolating the 

outgoing characteristics from the interior, in addition to imposing 
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appropriate data. The reader is referred to Bayliss et a1. (1985a) for 

further details. In order to complete the specification of the model we 

discuss the boundary conditions that are imposed. 

At the inflow (see Figure 1) an unsteady disturbance based on an 

incompressible Orr-Sommerfeld profile is imposed as described above. At the 

wall the velocities are set to zero and the temperature is specified to be the 

free-stream stagnation value. Active surface heating is modelled by locally 

modifying the temperature boundary condition. The functional form that we use 

to model the heating and cooling strips will be described later. 

Both the outflow and upper boundaries are subsonic and if we neglect 

viscosity, one boundary condition must be imposed because there is one 

incoming characteristic entering the computational domain. The boundary 

condition is chosen so that the time derivative of the incoming one-

dimensional normal characteristic variable is zero. For example, at the upper 

boundary we impose 

o (2.8) 

where 
~ 

c is the sound speed and p and 
~ 

c are taken from the previous time 

step. At the outflow boundary we impose 

o (2.9) 

corresponding to the characteristic entering the domain from x = ~. 

The use of the one-dimensional characteristic absorbing boundary 

condition, such as (2.9), is a common practice in wave propagation problems 
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(see Cohen, Hughes, and Jennings (1981)). This condition does not account for 

waves with a variable dispersion relation generated by the viscous boundary 

conditions. In practice we do not use data from a small region around the 

outflow boundary. We have verified that (2.8) and (2.9) do not affect the 

solution for the position of the artificial boundaries and the time intervals 

used in the computation. This is based on: 

(a) The ability of the code to reproduce growth rates and phase 

velocities predicted by linear theory (for sufficiently small inflow 

disturbances); 

(b) No visible reflections in specific profiles examined as a function 

of time; 

(c) Moving the position of the artificial boundaries and verifying that 

the solution is insensitive to the position of these boundaries. 

3. RESULTS 

In this section we present numerical results for two curved surfaces. 

The configurations are shown in Figure 2. They differ primarily in the height 

of the surface at the outflow boundary and also in the degree of curvature. 

In both cases the computational domain extends for a distance of 2.4 ft. in 

the stream-wise direction. The curved part of the surface extends for a 

distance of 1.2 ft. from the inflow and then becomes flat. The shape of the 

surface is defined by a fourth-degree polynomial which is designed to become 

flat smoothly at the inflow (x = 0) and at the position of the maximum height 

(x = 1.2 ft.) (see Maestrello et al. (1985)). 
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Unless otherwise stated, all of the present results are for an inflow 

Mach number, Mof 0.7, unit Reynolds number based on the free stream values 
00 

(Re/Ft), of 3.0 x 105 (corresponding to an inflow Reynolds number based on the 

displacement thickness, Re
o
*' of 896) and stagnation temperature of 5200 R. 

The final heights for the two configurations are 0.02 ft. and 0.04 ft. 

respectively. The boundary layer thickness at inflow (oi) is .0095 ft. 

The free stream velocity accelerates to M 
00 

0.725 (configuration 1) and 

0.76 (configuration 2) respectively. The final heights represent a 

significant perturbation compared to the boundary layer thickness and 

therefore the curvature affects the viscous stability of the flow even though 

the far field acceleration is not large. The Reynolds numbers based on the 

are 6170 and 12,850 respectively. 

The configurations were selected to illustrate the effect of the 

curvature induced mean pressure gradient on the stability of the boundary 

layer. In both configurations the curvature is initially concave causing a 

compression and a resulting destabilization. Further downstream the curvature 

becomes convex leading to an expansion with a resulting stabilization. 

Configuration 2 is twice as high as configuration 1, and the average slope of 

configuration 2 is twice that of configuration 1. As a result, the favorable 

pressure gradient is much larger for configuration 2 than configuration 1. 

In the first part of this section we study the behavior of uncontrolled 

disturbances around both configurations. With configuration 2, the favorable 

pressure gradient is sufficient to stabilize the flow over the flat portion of 

the surface. With configuration 1, the favorable pressure gradient is weaker, 

and the disturbance amplitude is sufficiently large (e: = 0.02) so that the 

disturbance exhibits strong nonlinear growth over the flat portion of the 
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surface. Thus, the net effect of the curvature is destabilizing. In the 

second part of this section, we demonstrate that with active control by 

periodic surface heating, the flow over configuration 1 can be stabilized. 

In the remainder of this section we will present results obtained from 

numerically computing both the mean flows associated with these configurations 

and the unsteady flow obtained from forcing the mean flow with an unsteady 

perturbation at the inflow and from imposing unsteady temperature disturbances 

on the surface as an active control mechanism. The code has been validated in 

two ways. In Bayliss, Maestrello, Parikh, and Turkel (1985b) it was shown 

that the growth (and decay) rates predicted from linear theory could be 

reproduced for sufficiently small inflow disturbances. (This was for a 

freestream Mach number of 0.4.) In addition, the results described below were 

verified by mesh refinements. 

We first discuss the mean flow solution and the uncontrolled, unsteady 

results. 

c p 

Mean and Uncontrolled Results 

The mean free stream Mach number Me and the pressure coefficient 

are shown in Figure 2 for both configurations. 

Here and below the subscripts e, 00 and i refer to the edge of the 

boundary layer, free stream and inflow conditions respectively. It is 

apparent that configuration 1 has a significant adverse pressure gradient 

while configuration 2 allows a large acceleration and favorable pressure 

gradient due to the increased height of the surface. 
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We next consider the unsteady flow obtained by introducing time-periodic 

disturbances at the inflow in the manner discussed above. The non-dimensional 

frequency F (= 21ff \l/U~i) is -4 0.8 x 10 • Based on the incompressible, 

linear stability theory for a flat-plate, this frequency is unstable. Here, 

f is the frequency and \l the kinematic viscosity. The maximum 

perturbation at the inflow is 2% of the freestream velocity. 

In Figure 3a we plot the growth of the unsteady disturbance as a function 

of x for both configurations and compare with the growth obtained over a 

flat plate of the same length. The growth of the disturbance is obtained by 

computing the RMS of the fluctuating momentum, integrating the result across 

the boundary layer and normalizing by the value at the inflow 

(I 2 (pu) *) . The results in Figure 3a were obtained using an identical 

inflow in all three cases. 

As can be seen, the behavior of the unsteady disturbance is very 

different for the two configurations. In both cases the disturbance is 

initially amplified due to the unfavorable pressure gradient. For 

configuration 2, it appears that the favorable pressure gradient is sufficient 

to significantly reduce the level .of the fluctuation so that over the flat 

portion there is no growth. In contrast, for configuration 1, the favorable 

pressure gradient is weaker and there is a much smaller reduction in amplitude 

up to the flat portion of the surface (x 1.2 ft.), with a strong 

exponential-like growth over the flat portion. In summary, the pressure 

gradient induced by configuration 1 is destabilizing while the pressure 

gradient induced by configuration 2 is stabilizing. 
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A very similar stability phenomenon has been observed for flows over a 

flat surface at two different Mach numbers. Computations were performed for 

flows at M = 0.7 and M = 0.4 (Bayliss et al. 1985b). The inflow Reynolds 

number (Re *) w and the amplitude of the perturbation at the inflow were the 

1000 and 2% respectively. Note that this inflow Re * w 
is different from 

that of Figure 3a which accounts for the difference in the growth rates for 

~ = 0.7 in two figures. In the case of M = 0.7 the disturbance first 

grew and then decayed while for M = 0.4 the disturbance exhibited strong 

exponential growth over the entire length of the surface. This is illustrated 

in Figure 3b taken from Bayliss et al. (l985b). These results demonstrate, 

for two different geometries, the stabilizing effect of increasing the Mach 

number. 

The growth observed in Figure 3b for M = 0.4 is a nonlinear effect. 

Reducing the amplitude of the inflow disturbance eliminated it. This behavior 

was explained by an analysis of Goldstein and Durbin (1986). They showed that 

nonlinear effects eliminated the upper branch of the stability curve. We have 

not investigated the effect of reducing the disturbance amplitude for 

configuration 1, but it is reasonable to assume that the growth exhibited in 

Figure 3a is a nonlinear effect of the type analyzed by Goldstein and Durbin 

(1986). 

The destabilizing effects of the surface curvature are also illustrated 

in Figures 4 and 5 where we plot the vorticity contours at a fixed instant of 

time for configurations 1 and 2 respectively. In both cases the figures 

indicate significant velocity gradients over the initial portion of the curved 

surface where there is an unfavorable mean pressure gradient. However, 

further downstream, Figure 5 shows a dramatic reduction in the size of the 
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perturbation, as compared to Figure 4. This is clearly a consequence of the 

stabilization caused by the large favorable mean pressure gradient of 

configuration 2. 

Control Results 

We model surface heating and cooling by modifying the temperature 

boundary condition over a small portion of the surface. In this paper we 

consider the control strip located in the region of unfavorable pressure 

gradient centered around x = 0.3 ft. Some preliminary results for the effects 

of surface heating and cooling in flows with both favorable and unfavorable 

pressure gradients were presented by Maestrello et al. (1985). 

The length of the control strip is roughly 10% of the wavelength of the 

disturbance at the inflow. For control, the temperature is modified according 

to the formula 

T Tw ( 2· 2(Ft 
-- = -- ± a + B sin -2 + ~») Tref Tref 

(3.1) 

where the plus sign is for heating and the minus sign is for cooling, ~ is 

the temperature at the wall (520oR), Tref is the reference temperature, and 

-4 F is the non-dimensional frequency (0.8 x 10 ). The functional form of 

(3.1) models resistive heating with a DC current (a) and an AC current 

(13). The phase ~ is varied to investigate the effectiveness of active 

control. 

The parameters for the heating case are a = 1.0, B = 2.76 corresponding 

to a peak temperature of 1650oR. For the cooling case, the parameters are 
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a = 0.77, a = 1.7 corresponding to a minimum temperature of 1900 R. In the 

heated case, the maximum temperature is roughly three times the unheated wall 

temperature which is close to the temperature used in the experiment of 

Maestrello (1985) using a tungsten wire. There were no numerical 

instabilities due to the large temperature perturbations but the heating 

forced a reduction in the allowable time step. In the cooled case, the 

parameters are chosen so that the temperature will stay within a range where 

Sutherland's law is valid for the viscosity as a function of temperature. We 

note that such a periodic cooling is not attainable by experimental techniques 

available at the present time except for extremely low frequencies. 

J-=i* In Figures 6 and 7 we plot the RMS momentum flux I pu~ for heating 

and cooling respectively. In each case we consider two extreme phases, 

corresponding to a controlling disturbance being in and out of phase with the 

unstable wave, and compare with the uncontrolled results. We did not make a 

systematic study of other phases for optimization. 

The results in Figure 6 demonstrate that depending upon the phase, active 

heating can either enhance or reduce the amplitude of the disturbance. In 

particular, the phase of the heating can be chosen to reduce the disturbance 

level to the point that there is no growth over the flat portion. In this 

case, the phase is ~ = 0°, corresponding to an out of phase signal. It is 

remarkable that a single heating strip can induce such a dramatic change in 

the behavior of the unsteady disturbance. This is to be contrasted with the 

relatively modest control the authors were able to obtain over a flat geometry 

with zero mean pressure gradient (see Bayliss et ale (1986». The results 

illustrate the enhanced receptivity due to the mean pressure gradient. Even 
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though the present control relates to a single frequency disturbance, it is 

not unreasonable to assume that a more complex flow can be controlled using 

multiple strips. In fact, Lynch et al. (1985) were able to control a 
,," 

turbulent spot in a water tunnel using multiple elements. As would be 

expected the opposite phase, 4> = 900 , amplifies the unsteady disturbance. 

This suggests that localized, periodic surface heating can be used to trip the 

boundary layer. Maestrello (1985) used this technique to effect instantaneous 

transition by using a heating element on the leading edge of an airfoil. 

The results for active cooling, Figure 7, are less dramatic but still 

indicate the effect of phase. In this case, the magnitude of the control 

temperature was roughly 1/3 that for the heating case. 

The instantaneous total vorticity for the controlled case, with out of 

phase heating, is shown in Figure 8. Large reduction in the level of the 

vorticity is evident .as compared to the uncontrolled case, Figure 4. In 

particular, this reduction is significant over the curvature and extending on 

to the flat portion. In Figure 9, time traces of pu( t) as a function of 

non-dimensional time t u /L 
co 

are shown at .four different positions across 

the boundary layer, where L is the reference length. The effectiveness of 

control is further illustrated where the RMS of the mass fluctuation 

Q is plotted as a function of for both the controlled and the 

uncontrolled cases. The results (see especially r = 0.806) not only show 

the reduction in amplitude due to the active control, but that nonlinear 

distortion present in the uncontrolled solution is almost completely 

eliminated by the active control. This shows that the flow has been brought 

back into the linear regime. 
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4. CONCLUSIONS 

The growth and decay of spatially unstable disturbances in a compressible 

boundary layer over a concave-convex surface is dependent upon the overall 

mean pressure gradient induced by the curvature and by the parameters of the 

disturbance. In both the configurations studied, the disturbance initially 

amplifies due to the concave curvature and then decays in the region of the 

favorable mean pressure gradient induced by the convex curvature. It is 

observed that for the configuration with a larger favorable mean pressure 

gradient, the stabilizing effect is large enough to reduce the growth 

significantly. This is a form of passive control by geometrical shaping. It 

has limited application and may have adverse effect on the total drag. 

For the configuration with smaller favorable mean pressure gradient, the 

flow is not stabilized. For this case it is shown that active control using 

localized periodic surface heating is a viable technique to achieve flow 

control. In contrast with our earlier study with zero mean pressure gradient 

(Bayliss et ale (1985a)). it is demonstrated that the receptivity of the flow 

is enhanced. Active control is a more flexible control mechanism than passive 

methods, because the phase and amplitude, over a range of frequencies can be 

controlled by matching to the unstable wave to cancel existing disturbances. 

In practice, active surface heating would be applied with multiple 

heating strips and with temperature signals that are synthesized by a feedback 

control mechanism. In addition, the unstable disturbances may not be periodic 

and may have significant three-dimensionalities. In such a case, distributed 

control may have to be used with non-periodic,signals and phase variation in 

the spanwise direction. 
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