51 research outputs found
Seed Storage, Viability And Rejuvenation
The results of research on the principles of seed showed that the key to the succesful storage of samples of orthodox seeds such as chickpeas, faba beans, and lentils was the control of the temperature and moisture regime
World Distribution of Pigeonpea
Pigeonpea (Cajanus cajan (L.) Millsp.) is an important grain legume in the semi-arid tropics. Apart from India, where the largest crop areas occur, and some other producing countries, statistics are either unavailable or tend to underestimate the importance of pigeonpea. The plants are often intercropped, or grown as hedges or single plants near houses where they contribute to the protein diet. This bulletin describes the distribution of pigeonpea as revealed by herbarium data and presents maps of the localities where pigeonpea is found. The information is intended for plant collectors, other scientists, and decision makers. Some pertinent information on cultivation methods and production has been included. The 1982 status of germplasm available from the areas of occurrence has been summarized
Chickpea bibliography, 1930 to 1974
With an increased emphasis on research on the important grain legume crop of chickpea, there is a need for a comprehensive listing of chickpea literature. Bibliographies prepared by the ICAR (I960), Regional Pulse Improvement Project of USDA (1966-1970), and L.J.G. van der Maesen (1972) have been the basic resource works on chickpea; this effort was undertaken to update the available bibliographic works and to provide wider coverage of the world literature
Strange nuclear matter within Brueckner-Hartree-Fock Theory
We have developed a formalism for microscopic Brueckner-type calculations of
dense nuclear matter that includes all types of baryon-baryon interactions and
allows to treat any asymmetry on the fractions of the different species (n, p,
, , , , and ). We present
results for the different single-particle potentials focussing on situations
that can be relevant in future microscopic studies of beta-stable neutron star
matter with strangeness. We find the both the hyperon-nucleon and
hyperon-hyperon interactions play a non-negligible role in determining the
chemical potentials of the different species.Comment: 36 pages, LateX, includes 8 PostScript figures, (submitted to PRC
Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives
Pigeonpea (Cajanus cajan) is an annual or short-lived perennial food legume of acute regional importance, providing significant protein to the human diet in less developed regions of Asia and Africa. Due to its narrow genetic base, pigeonpea improvement is increasingly reliant on introgression of valuable traits from wild forms, a practice that would benefit from knowledge of its domestication history and relationships to wild species. Here we use 752 single nucleotide polymorphisms (SNPs) derived from 670 low copy orthologous genes to clarify the evolutionary history of pigeonpea (79 accessions) and its wild relatives (31 accessions). We identified three well-supported lineages that are geographically clustered and congruent with previous nuclear and plastid sequence-based phylogenies. Among all species analyzed Cajanus cajanifolius is the most probable progenitor of cultivated pigeonpea. Multiple lines of evidence suggest recent gene flow between cultivated and non-cultivated forms, as well as historical gene flow between diverged but sympatric species. Evidence supports that primary domestication occurred in India, with a second and more recent nested population bottleneck focused in tropical regions that is the likely consequence of pigeonpea breeding. We find abundant allelic variation and genetic diversity among the wild relatives, with the exception of wild species from Australia for which we report a third bottleneck unrelated to domestication within India. Domesticated C. cajan possess 75% less allelic diversity than the progenitor clade of wild Indian species, indicating a severe “domestication bottleneck” during pigeonpea domestication
Chickpea
The narrow genetic base of cultivated chickpea warrants systematic collection,
documentation and evaluation of chickpea germplasm and particularly wild
Cicer species for effective and efficient use in chickpea breeding programmes.
Limiting factors to crop production, possible solutions and ways to overcome
them, importance of wild relatives and barriers to alien gene introgression and
strategies to overcome them and traits for base broadening have been discussed.
It has been clearly demonstrated that resistance to major biotic and abiotic
stresses can be successfully introgressed from the primary gene pool
comprising progenitor species. However, many desirable traits including high
degree of resistance to multiple stresses that are present in the species
belonging to secondary and tertiary gene pools can also be introgressed by
using special techniques to overcome pre- and post-fertilization barriers.
Besides resistance to various biotic and abiotic stresses, the yield QTLs have
also been introgressed from wild Cicer species to cultivated varieties. Status
and importance of molecular markers, genome mapping and genomic tools
for chickpea improvement are elaborated. Because of major genes for various
biotic and abiotic stresses, the transfer of agronomically important traits into
elite cultivars has been made easy and practical through marker-assisted
selection and marker-assisted backcross. The usefulness of molecular markers
such as SSR and SNP for the construction of high-density genetic maps of
chickpea and for the identification of genes/QTLs for stress resistance, quality
and yield contributing traits has also been discussed
Chickpea genetic resources at ICRISAT
Since 1973 a total of 11 483 accessions from 36 countries have been collected. Every year, accessions are grown at two sites in India, Patancheru and Hissar, and evaluated for agronomic and quality traits. Seven wild perennials and all eight wild annual species have been collected and are maintained at ICRISAT
ICPH 2671 – the world's first commercial food legume hybrid
ICRISAT scientists, working with Indian programme counterparts, developed the world's first cytoplasmic-nuclear male sterility (CMS)-based commercial hybrid in a food legume, the pigeonpea [Cajanus cajan (L.) Millsp.]. The CMS, in combination with natural outcrossing of the crop, was used to develop viable hybrid breeding technology. Hybrid ICPH 2671 recorded 47% superiority for grain yield over the control variety ‘Maruti’ in multilocation on-station testing for 4 years. In the on-farm trials conducted in five Indian states, mean yield of this hybrid (1396 kg/ha) was 46.5% greater than that of the popular cv. ‘Maruti’ (953 kg/ha). Hybrid ICPH 2671 also exhibited high levels of resistance to Fusarium wilt and sterility mosaic diseases. The outstanding performance of this hybrid has led to its release for cultivation in India by both a private seed company (as ‘Pushkal’) and a public sector university (as ‘RV ICPH 2671’). Recent developments in hybrid breeding technology and high yield advantages realized in farmers' fields have given hope for a breakthrough in pigeonpea productivity
- …