199 research outputs found

    Potato virus Y (PVY) strains in Belgian seed potatoes and first molecular detection of the N-Wi strain

    Get PDF
    Potato virus Y (PVY), one of the most important agents causing potato crop losses worldwide, is transmitted by a variety of aphid species in a non-persistent manner. Several PVY strains have been differentiated, all of them causing different symptoms and symptom expression levels on numerous commercial potato cultivars. In Belgium, strains belonging to the N group have been reported as the most prevalent, but no detailed information on the relative importance of the PVY strains in Belgium have been published to date. We report here on a survey performed on Belgian seed potatoes harvested in 2010 in which 2700 individual tubers from 54 seed potato lots originating from 54 farms were screened for presence of PVY. The results revealed a high PVY incidence and substantial strain diversity in some farms. The dominance of the N group in Belgian seed potatoes was confirmed, while the 0 strain was only found in a few locations. Further characterization using multiplex PCR identified 75% of the isolates as NTN strains and 7.5% as Wilga strain (N-Wi). The presence of the N-Wi strain was confirmed and characterized for the first time in Belgian seed potato production

    Microarray-based screening of differentially expressed genes of E. coli O157:H7 Sakai during preharvest survival on butterhead lettuce

    Get PDF
    Numerous outbreaks of Escherichia coli O157:H7 have been linked to the consumption of leafy vegetables. However, up to the present, little has been known about E. coli O157:H7's adaptive responses to survival on actively growing (and thus responsive) plants. In this study, whole genome transcriptional profiles were generated from E. coli O157:H7 cells (isolate Sakai, stx-) one hour and two days after inoculation on the leaves of growing butterhead lettuce, and compared with an inoculum control. A total of 273 genes of E. coli O157:H7 Sakai (5.04% of the whole genome) were significantly induced or repressed by at least two-fold (p < 0.01) in at least one of the analyzed time points in comparison with the control. Several E. coli O157:H7 genes associated with oxidative stress and antimicrobial resistance were upregulated, including the iron-sulfur cluster and the multiple antibiotic resistance (mar) operon, whereas the Shiga toxin virulence genes were downregulated. Nearly 40% of the genes with significantly different expression were poorly characterized genes or genes with unknown functions. These genes are of special interest for future research as they may play an important role in the pathogens' adaptation to a lifestyle on plants. In conclusion, these findings suggest that the pathogen actively interacts with the plant environment by adapting its metabolism and responding to oxidative stress

    Enteric pathogen survival varies substantially in irrigation water from Belgian lettuce producers

    Get PDF
    It is accepted that irrigation water is a potential carrier of enteric pathogens, such as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by comparing irrigation water samples taken from five different greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water were monitored up till 14 days. The influence of water temperature and chemical water quality was evaluated, and the survival tests were also performed in water samples from which the resident aquatic microbiota had previously been eliminated by filter sterilization. The pathogen's survival differed greatly in the different irrigation waters. Three water samples contained nutrients to support important growth of the pathogens, and another enabled weaker growth. However, for all, growth was only observed in the samples that did not contain the resident aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. The same survival tendencies existed in water of 4 degrees C and 20 degrees C, although always more expressed at 20 degrees C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves, while suspended in two of the water samples or in a buffer. The effect of the water sample on the pathogen's fitness was also reproduced on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and survival, while the pathogen level in the other water sample decreased once loaded on the leaves. Our results show that irrigation waters from different origin may have a different capacity to transmit enteric pathogens and an important impact on the fitness of the pathogens to sustain and even grow on the leaf surface

    Occurrence, ecology and potential impact of the New Zealand wheat bug Nysius huttoni White (Hemiptera: Lygaeidae) in Belgium

    Get PDF
    In 2002 the New Zealand wheat bug Nysius huttoni White was observed for the first time in the Netherlands and Belgium. The introduction of N. huttoni to our regions presumably occurred via overseas transport of apple and kiwi fruits from New Zealand. Laboratory experiments showed that both eggs and adults of N. huttoni were capable of surviving cold conditions similar to those in overseas transportation. Specimens were sampled in Belgium and the Netherlands, and a DNA sequence analysis indicated a 100% similarity with N. huttoni material collected in Christchurch, New Zealand. The distribution of the lygaeid in Belgium in 2008 was studied based on a systematic sampling at 105 locations. The bug had been able to spread over most of the Belgian territory, with the exception of the most southern and eastern provinces. Given the poor flight capacity of Belgian N. huttoni populations, other methods of dispersal may be involved. N. huttoni occurred primarily in ruderal habitats, and its weedy host plants belong to very common plant families. Several observations support N. huttoni not being a threat for agricultural crops in Belgium under the present conditions of climate and soil usage

    Hilbert expansion based fluid models for kinetic equations describing neutral particles in the plasma edge of a fusion device

    Get PDF
    Neutral particles in the plasma edge of fusion devices based on magnetic confinement are described by a transient kinetic equation incorporating ionization, recombination, and charge-exchange collisions. In charge-exchange dominated regimes, the neutral particle velocity distribution approaches the drifting Maxwellian defined by the mean velocity and temperature of the plasma. This enables model order reduction from the kinetic equation to approximate fluid models. We derive transient fluid models consistent with the kinetic equation by exploring a splitting based approach. We split the kinetic equation in sources and sinks on the one hand, and transport combined with charge-exchange on the other hand. Combining transport with charge-exchange collisions allows for deriving Hilbert expansion based fluid models. The retrieved fluid models depend on the assumed importance (scaling) of the different terms in the split equation describing transport and charge-exchange. We explore two scalings: the hydrodynamic scaling and the diffusive scaling. The performance of the fluid models with respect to a discrete velocity model and a Monte Carlo reference solver is assessed in numerical experiments. The code used to perform the numerical experiments is openly available.Comment: 22 pages, 5 figures. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Physics of Plasmas (Vol.30, Issue 6) and may be found at https://doi.org/10.1063/5.014615

    Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content

    Get PDF
    Background: Xanthomonas fragariae (Xf) is a bacterial strawberry pathogen and an A2 quarantine organism on strawberry planting stock in the EU. It is taxonomically and metabolically distinct within the genus Xanthomonas, and known for its host specificity. As part of a broader pathogenicity study, the genome of a Belgian, virulent Xf strain (LMG 25863) was assembled to draft status and examined for its pathogenicity related gene content. Results: The Xf draft genome (4.2 Mb) was considerably smaller than most known Xanthomonas genomes (similar to 5 Mb). Only half of the genes coding for TonB-dependent transporters and cell-wall degrading enzymes that are typically present in other Xanthomonas genomes, were found in Xf. Other missing genes/regions with a possible impact on its plant-host interaction were: i) the three loci for xylan degradation and metabolism, ii) a locus coding for a beta-ketoadipate phenolics catabolism pathway, iii) xcs, one of two Type II Secretion System coding regions in Xanthomonas, and iv) the genes coding for the glyoxylate shunt pathway. Conversely, the Xf genome revealed a high content of externally derived DNA and several uncommon, possibly virulence-related features: a Type VI Secretion System, a second Type IV Secretion System and a distinct Type III Secretion System effector repertoire comprised of multiple rare effectors and several putative new ones. Conclusions: The draft genome sequence of LMG 25863 confirms the distinct phylogenetic position of Xf within the genus Xanthomonas and reveals a patchwork of both lost and newly acquired genomic features. These features may help explain the specific, mostly endophytic association of Xf with the strawberry plant

    High-quality draft genome sequences of five xanthomonas arboricola pv. fragariae isolates

    Get PDF
    Xanthomonas arboricola pv. fragariae was described in 2001 as the causal agent of strawberry bacterial leaf blight. We report here the first draft whole-genome sequences of fiveX. arboricolapv. fragariae isolates from Italy and France

    Survival of enteric pathogens during butterhead lettuce growth : crop stage, leaf age, and irrigation

    No full text
    The survival of Salmonella enterica serovar Thompson and Escherichia coli O157 was investigated on growing butterhead lettuce plants in the plant-growth chamber and greenhouse. All inoculation tests were made under conditions that approximate the greenhouse conditions for butterhead lettuce cultivation in Flanders (Belgium). The survival and proliferation of the pathogens on the leaves was determined at days 0, 4, and 8 after inoculation using standard plating techniques on selective medium. In the growth chamber, the extent to which both pathogens were able to multiply on the lettuce leaves was influenced by crop stage and leaf age. On young plants, the older leaves supported pathogen survival better. On nearly mature plants, pathogen population sizes were significantly higher on the old and young leaves compared with middle-aged leaves (p < 0.001). In the greenhouse, the environmental regimen with high fluctuations in temperature and relative humidity was less conducive to the survival of E. coli O157, though its survival on nearly mature lettuce was enhanced by overhead irrigation. The moist conditions between the folded inner leaves are likely contributing to the survival of enteric pathogens in the lettuce head. Butterhead lettuce grown in greenhouses with a sprinkle irrigation system may present a potential health hazard when contaminated near harvest. Experimental design (growth chamber versus greenhouse) largely influences enteric pathogen behavior on growing lettuce plants

    Engineered flock house virus for targeted gene suppression through RNAi in fruit flies (Drosophila melanogaster) in vitro and in vivo

    Get PDF
    RNA interference (RNAi) is a powerful tool to study functional genomics in insects and the potential of using RNAi to suppress crop pests has made outstanding progress. However, the delivery of dsRNA is a challenging step in the development of RNAi bioassays. In this study, we investigated the ability of engineered Flock House virus (FHV) to induce targeted gene suppression through RNAi under in vitro and in vivo condition. As proxy for fruit flies of agricultural importance, we worked with S2 cells as derived from Drosophila melanogaster embryos, and with adult stages of D. melanogaster. We found that the expression level for all of the targeted genes were reduced by more than 70% in both the in vitro and in vivo bioassays. Furthermore, the cell viability and median survival time bioassays demonstrated that the recombinant FHV expressing target gene sequences caused a significantly higher mortality (60-73% and 100%) than the wild type virus (24 and 71%), in both S2 cells and adult insects, respectively. This is the first report showing that a single stranded RNA insect virus such as FHV, can be engineered as an effective in vitro and in vivo RNAi delivery system. Since FHV infects many insect species, the described method could be exploited to improve the efficiency of dsRNA delivery for RNAi-related studies in both FHV susceptible insect cell lines and live insects that are recalcitrant to the uptake of naked dsRNA
    corecore