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Abstract: It is accepted that irrigation water is a potential carrier of enteric pathogens, such 

as Salmonella and E. coli O157:H7 and, therefore, a source for contamination of fresh 

produce. We tested this by comparing irrigation water samples taken from five different 

greenhouses in Belgium. The water samples were inoculated with four zoonotic strains, two 

Salmonella and two E. coli O157:H7 strains, and pathogen survival and growth in the water 

were monitored up till 14 days. The influence of water temperature and chemical water 
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quality was evaluated, and the survival tests were also performed in water samples from 

which the resident aquatic microbiota had previously been eliminated by filter sterilization. 

The pathogen’s survival differed greatly in the different irrigation waters. Three water 

samples contained nutrients to support important growth of the pathogens, and another 

enabled weaker growth. However, for all, growth was only observed in the samples that did 

not contain the resident aquatic microbiota. In the original waters with their specific water 

biota, pathogen levels declined. The same survival tendencies existed in water of 4 °C and 20 

°C, although always more expressed at 20 °C. Low water temperatures resulted in longer 

pathogen survival. Remarkably, the survival capacity of two E. coli 0157:H7 strains differed, 

while Salmonella Thompson and Salmonella Typhimurium behaved similarly. The pathogens 

were also transferred to detached lettuce leaves, while suspended in two of the water samples 

or in a buffer. The effect of the water sample on the pathogen’s fitness was also reproduced 

on the leaves when stored at 100% relative humidity. Inoculation of the suspension in buffer 

or in one of the water samples enabled epiphytic growth and survival, while the pathogen 

level in the other water sample decreased once loaded on the leaves. Our results show that 

irrigation waters from different origin may have a different capacity to transmit enteric 

pathogens and an important impact on the fitness of the pathogens to sustain and even grow 

on the leaf surface. 

Keywords: Escherichia coli O157:H7; Salmonella; enteric pathogens; irrigation water; 

lettuce; fresh produce 

 

1. Introduction 

Salmonella enterica and Escherichia coli O157:H7 (E. coli O157:H7) are the two most important 

bacterial pathogens associated with foodborne illness caused by the consumption of fresh produce [1]. 

Lettuce is the single most implicated commodity [2]. Fresh produce may become contaminated at every 

stage of the production process. However, before harvest, irrigation water is considered an important 

introduction route [3–6]. Groundwater may become contaminated by leaching of material through the 

soil, originating from, e.g., organic manure or feces from adjacent fields, whereas pond water may also 

directly become contaminated by fecal deposition [3,4,7–9]. These different water sources are used for 

irrigation by Belgian growers that produce lettuce in greenhouses. There is, however, a lack of 

information to what extent the risk for contamination of the plant products is comparable in different 

situations [10]. In the present research, the survival capacity of the pathogens in irrigation water samples 

from five Belgian lettuce producing sites was investigated. These waters were characterized and stored 

at 4 °C (±average minimum winter temperature Belgian surface water) and 20 °C (±average maximum 

summer temperature Belgian surface water) [11,12], with and without the addition of four enteric 

bacterial strains, two Salmonella and two Escherichia coli O157:H7 strains. The interaction of the 

pathogens with the resident aquatic biota and the influence of the chemical water quality was studied by 

comparing the survival of the pathogenic strains in previously filter sterilized and untreated water. 



Int. J. Environ. Res. Public Health 2014, 11 10107 

 

 

Pathogen survival was compared in these water conditions, but also afterwards when transmitted to 

leaves, which was tested in a lab-scale experiment. 

2. Experimental Section  

2.1. Strains and Growth Conditions 

For the survival experiments in irrigation water, four pathogen strains were used. Salmonella Thompson 

RM1987N, a spontaneous nalidixic acid-resistant mutant of Salmonella Thompson strain RM1987,  

was kindly donated by Dr. Maria Brandl (USDA-ARS, Albany, CA, USA). Strain RM1987 is a 

previously described clinical isolate from a patient in a cilantro-linked outbreak in California [13]. 

Salmonella Typhimurium PT 120/ad MB4880 (molecular bacteriology collection of the molecular 

bacteriology lab of Institute for Agricultural and Fisheries Research (ILVO)—Technology and Food 

Science Unit, Melle, Belgium) was isolated from overshoes at a pig farm in Belgium. E. coli O157:H7 

MB3885 was isolated from beef carpaccio and kindly donated by the Scientific Institute for Public 

Health (Brussels, Belgium) and E. coli O157:H7 NCTC12900 by Dr. Martin Woodward (Department of 

Bacteriology, Veterinary Laboratories Agency (VLA) Weybridge, New Haw, Addlestone,  

Surrey, UK). Both E. coli O157:H7 isolates lack Shiga toxin genes (stx1 and stx2) and were used for 

biosafety reasons as non-toxigenic surrogate strains for the Shiga toxin producing (STEC) serotype 

O157:H7. For E. coli O157:H7 MB3885, the absence of the stx1 and stx2 genes and the presence of 

other virulence genes, eaeA (intimin), ehx (enterohemolysin), espP (extracellular serine protease) and 

katP (catalase-peroxidase), were confirmed by conventional PCR, as previously described [14].  

E. coli O157:H7 NCTC12900 originated from a verocytotoxigenic strain, which lost its ability to 

produce toxin. It was already used in several studies as a surrogate strain [15–18].  

For the experiments with artificially inoculated lettuce, green fluorescent protein (GFP) transformed 

strains were used: Salmonella Thompson RM1987N [13] and E. coli O157:H7 MB3885 (our own 

constructs, plasmid pGFP, Clontech, Palo Alto, CA, USA). GFP labeled strains were used to be able to 

distinguish the pathogens from the natural background microbiota on the lettuce leaves, as previously 

described (among others [13,19–21]).  

All strains were taken from a glycerol frozen stock maintained at −70 °C, streaked onto a tryptone 

soy agar (TSA) plate (Oxoid, Basingstoke, UK) and incubated at 37 °C for 24 h. A single colony from 

the plate was transferred to 10 mL of tryptone soy broth (TSB) (Oxoid, Basingstoke, UK) and incubated 

at 37 °C for 20 h at 200 rpm. The appropriate antibiotic was added to these media when GFP labeled 

strains were used. This was 15 µg/mL gentamicin (G1264, Sigma-Aldrich, St. Louis, MO, USA) for 

Salmonella Thompson RM1987N GFP and 50 µg/mL ampicillin (G9518, Sigma-Aldrich) for E. coli 

O157:H7 MB3885 GFP.  

The stability of the GFP plasmid in the bacteria was examined by tracing the GFP expression,  

as previously described [22], but with a few modifications. The GFP labeled bacteria were inoculated 

into TSB broth without antibiotics. Samples of the cultures were diluted (1:1000) in fresh medium daily, 

incubated for 24 h, 200 rpm, 37 °C and transferred again. Plate counting on TSA plates with or without 

antibiotic was performed daily to quantify the functional stability of the plasmid. The fluorescence of 

the colonies was checked under UV light (366 nm). Non-fluorescent colonies and randomly selected 
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fluorescent colonies were streaked onto the appropriate selective medium. This was xylose lysine 

desoxycholate agar (XLD) (LAB032; Lab M, Bury, UK) for Salmonella and cefixime-tellurite sorbitol 

Mac Conkey agar (CT-SMAC) (Lab 161; Lab M) for E. coli O157:H7. The plates were incubated at  

37 °C for 24 h.  

2.2. Irrigation Water Samples 

Irrigation water was collected (10 L samples) at four commercial greenhouses in Belgium where 

lettuce is grown and at the greenhouse complex of ILVO. Three ground water (GW1–3) samples and 

two pond water (PW1–2) samples were taken in a sterile manner. 

These water samples (untreated) were stored for maximum 24 h at 4 °C before the start of the 

experiment. Parallel to this, subsamples were sterilized by passing through a 0.22-µm filter  

(Bottle Top Filters, 500-mL Capacity, MF75™ Series, Nalgene, Rochester, NY, USA) and stored 

immediately at −18 °C until used. Another set of subsamples (1 L) was analyzed by INAGRO 

(Rumbeke-Beitem, Belgium) and ILVO (Merelbeke, Belgium) for the following parameters: electrical 

conductivity (EC), pH and concentrations of Cl, SO4, NO3, NO2, NH4, Na, K, Ca, Mg, Fe,  

Mn and Zn. The biological oxygen demand (BOD) and chemical oxygen demand (COD) were measured for 

PW1 and GW1, but the values were below detection (<5 mg/L O2 respectively <25 mg/L O2).  

The water samples were checked for the presence of Salmonella and E. coli O157:H7. Therefore, three 

times 1 mL was enriched in 9 mL buffered peptone water (BPW; Oxoid, Basingstoke, UK) and incubated 

at 37 °C, 24 h, 200 rpm. These enrichments were then streaked onto the selective media XLD and CT-

SMAC. The plates were incubated at 37 °C for 24 h and checked for presumptive colonies. Presumptive 

Salmonella-type colonies were observed in GW1 and PW1, but the colonies were negative for 

Salmonella by serological testing (DR1108, Oxoid, Basingstoke, UK).  

2.3. Pathogen Inoculation of Irrigation Water Samples 

An overview of the different experimental conditions and used strains is shown in Table 1.  

Freshly grown strains were washed twice by centrifugation (13,000× g, 5 min), and the pellet was 

resuspended in distilled water. The optical density (595 nm) of the cultures was measured,  

and the appropriate amount of bacterial suspension was added to 720 mL of irrigation water in order to 

obtain a pathogen concentration of approximately 3.5 log CFU/mL. For each experimental condition,  

twelve sterile loosely capped vials (microcosms, Sigma-Aldrich, 60 mL) were filled with 20 mL of 

inoculated water. The vials were statically placed in the dark in a constant temperature of 20 °C or  

4 °C. Static conditions were preferred, because Salmonella enterica and E. coli O157:H7 were shown to 

survive better under (semi)anaerobic than under aerobic conditions [23]. Uninoculated water samples 

(both untreated and filter sterilized) stored at 20 °C and 4 °C were used as negative controls.  

2.4. Quantification of Pathogen Survival in the Irrigation Water Samples 

Directly after inoculation and 2, 6 and 14 days thereafter, three vials were randomly taken from each 

experimental condition. They were vortexed on maximum speed for 15 s, and the pathogen level was 

determined by plating dilutions (in 0.1% peptone) onto the corresponding selective media XLD or  
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CT-SMAC incubated for 24 h at 37 °C and on the non-selective medium TSA incubated for 24 h at  

42 °C. The choice to plate on TSA incubated at 42 °C was based on the fact that for two water samples 

(GW1 and PW1), plating on selective medium was impossible due to the presence of interfering  

non-Salmonella black colonies on the XLD-plates. A preliminary test had shown that the plate counts 

on TSA incubated at 42 °C were not significantly different from these incubated at 37 °C,  

while the growth of the natural background flora was strongly reduced at 42 °C. Two different controls 

were performed on the TSA-plates. First, there were no bacterial plate counts with the non-inoculated 

irrigation water samples, and secondly, randomly selected colonies grown on TSA reacted correctly in 

serological tests for E. coli 0157:H7 (DR0620, Oxoid, Basingstoke) and Salmonella (DR1108, Oxoid, 

Basingstoke). The limit of detection by plating was 0.6 log CFU/mL and achieved by plating  

0.25 mL on a plate. Samples negative by plating were subjected to an enrichment step in BPW; therefore, 

1 mL of the sample was added to 9 mL BPW, as described above. For the calculations, samples positive 

after enrichment were considered to be at the detection limit of plating  

(0.6 log CFU/mL), samples testing negative after enrichment were assigned a value of 0,  

as described by Erickson et al. [24].  

Table 1. Overview of the 4 pathogen strains and 14 variables tested to measure pathogen 

survival and background bacteria in each irrigation water sample. 

Water Treatment 

Inoculation of the Water with 
Storage 

Temperature of 

Inoculated Water 

Salmonella 

Thypimurium 

MB3885 

Salmonella 

Thompson 

RM1987N 

E. coli 

O157:H7 

MB3885 

E. coli 

O157:H7 

NCTC12900 

Non 

Inoculated 

untreated  x x  x 4 °C 

filter sterilized  x x  x 4 °C 

untreated x x x x x 20 °C 

filter sterilized  x x  x 20 °C 

2.5. Quantification of the Resident Heterotrophic Bacteria in the Irrigation Water Samples 

For the untreated samples, the heterotrophic count was determined by plating tenfold dilutions onto 

water plate count agar (WPCA, 6 g/L tryptone, 15 g/L bacto agar, 3 g/L yeast extract) and incubated for 

5 days at 20 °C. This was done for both the water samples inoculated with a pathogenic strain and for 

the negative controls. In the first case, the pathogen counts were subtracted from the WPCA counts,  

as described previously [25]. 

2.6. Plant Growth Conditions 

Pelletized butterhead lettuce seed (Lactuca sativa var capitata “Alexandria RZ”) was obtained from 

Rijk Zwaan Distribution B.V., De Lier, The Netherlands. The plants were grown in the ILVO greenhouse 

in commercial potting soil (seed and cutting compost, Saniflor, Geraardsbergen, Belgium), in pots of 

20-cm diameter till fully headed, mature plants (approximately 16 weeks). 
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2.7. Pathogen Inoculation of Lettuce Leaves 

Bacterial inocula were prepared in five hundred mL of Groundwater Sample 3 (GW3), Pond Water 

Sample 2 (PW2) or phosphate-saline buffer (PBS) (50 mM, pH 7.4), to which GFP labelled Salmonella 

Thompson or E. coli O157:H7 MB3885 (in the same concentrations) were added. These suspensions 

were then immediately applied on plant leaves. Young inner leaves of mature lettuce crops were cut 

approximately 1 cm above the soil surface. For each test combination, 9 detached leaves were dipped 

for 3 seconds in the appropriate suspension, allowed to drip off. The initial contamination levels were 

±3.5 log CFU/g leaf (see also Section 2.8). The leaves were then placed in trays with paper towel 

(random design), allowed to dry (30 min) in the biosafety cabinet and subsequently transferred into 

plastic boxes that had a 10-cm layer of water in the bottom. The boxes were closed with glass plates to 

reach 100% relative humidity (Figure 1) and placed in a growth chamber with a 14/10 h day/night regime 

at 20 °C/12 °C. Relative humidity and temperature in the boxes were logged every 5 min with an EL-

USB-2 data logger (Lascar Electronics, Salisbury, UK). Pathogen levels on the leaves were followed for 

three days.  

Figure 1. Experimental set-up of the lettuce experiment. Inoculated lettuce leaves were 

placed on trays. The trays were placed in plastic boxes with 100% RH in a growth chamber 

with a 14/10 h day/night regime at 20 °C/12 °C. 
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2.8. Quantification of Pathogen Survival on the Lettuce Leaves 

Thirty minutes (Day 0) and 1 and 3 days after inoculation, three leaves of each test combination were 

randomly selected, individually placed in a sterile extraction bag with a filter (Bioreba, Reinach, 

Switzerland) and weighed. After addition of PBS with Tween 20 (0.05% v/v) at a 1/1 (w/v) ratio,  

the leaves were ground for 15 s at maximum speed with a Homex 6 (Bioreba), which generated a 

homogenous mixture. Ten-fold dilutions (in 0.1% peptone) of the extracts were plated on TSA 

supplemented with the appropriate plasmid encoded antibiotic. The plates were incubated at 37 °C for 

24 h, and the fluorescent colonies were counted under UV light (366 nm). 

2.9. Statistical Analysis 

The pathogen survival experiments in irrigation water were performed one time; three vials were 

analyzed at each time point for each investigated condition. The influence of the plating medium was 

analyzed using a full factorial negative binomial regression with day and plating medium integrated as 

factors in the regression model for each water sample, strain, filtering treatment and temperature 

combination. The influence of the different treatments on the survival of the pathogens in the irrigation 

water was analyzed by means of a full factorial negative binomial regression with day, temperature and 

filtering treatment integrated as factors in the regression model for each water sample and strain 

combination. The difference in survival between the different strains was analyzed using a full factorial 

negative binomial regression with day and strain as factors for the untreated water samples stored at 20 

°C. Each analysis with the negative binomial regression models started with a saturated model, and 

interactions and non-significant main factors were sequentially dropped at a significance level of 0.05. 

The most parsimonious model was used when analyzing the data. Negative binomial regression was 

performed using the GENMOD procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA). The 

experiments with lettuce leaves were performed twice with three lettuce leave samples on different days 

and with different lettuce crops. The results were analyzed by day. A non-parametric Kruskal-Wallis 

test with pairwise comparison and taking the necessary Bonferroni corrections into account was 

performed (IBM SPSS Statistics 19, Somers, NY, USA). 

3. Results 

3.1. Pathogen’s Survival in Irrigation Water: Influence of Water Temperature and Resident  

Aquatic Microbiota 

The chemical characteristics of the water samples are presented in Table 2. Figure 2A–F and  

Figure 3A–D show the survival of Salmonella Thompson (ST) and E. coli O157:H7 MB3885 (EC) in 

the five irrigation water samples. The results from the TSA platings at 42 °C are shown. In general, 

higher populations of pathogens were recovered from the TSA platings compared with the respective 

selective media (CT-SMAC and XLD). This effect was more often observed in water samples stored at 

4 °C (14/15) in comparison with at 20 °C (5/15) (data not shown). Except for GW3, higher pathogen 

counts were observed at 20 °C in filter sterilized water in comparison with untreated water,  

and these differences were significant for GW1, PW1 and PW2 (for GW1, PW1 and PW2, EC and ST,  
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p < 0.0001). The biggest differences between filter sterilization treatment or not were observed in PW1; 

in this water sample, both pathogens survived significantly better at 4 and 20 °C (ST 4 °C,  

ST 20 °C and EC 20 °C, p < 0.0001; EC 4 °C, p < 0.001) in filter sterilized water in comparison with 

the untreated samples stored at the same temperature. The highest pathogen counts were detected in 

water samples that were filter sterilized and stored at 20 °C, as well. Moreover, in three of these water 

samples, both pathogens were able to grow within the first six days after inoculation (up to 6.03 log/mL) 

(GW1, PW1 and PW2). This was not noticed at 4 °C. Both pathogens survived in general better in 

untreated water kept at 4 °C instead of 20 °C; growth was not observed.  

Table 2. Chemical water characteristics of the five irrigation water samples. 

Water 

Sample 

pH-

H2O 

EC 𝑵𝑶𝟑
− 𝑵𝑯𝟒

− SO4 Cl Fe Mn Mg Ca K Na Cu Zn NO2 

µS/c

m 

mg/

L 
mg/L 

mg/

L 

mg/

L 

mg/

L 

mg/

L 

mg/

L 
mg/L 

mg/

L 

mg/

L 
µg/L 

mg/

L 

mg/

L 

GW1 a 7.45 710 0.383 
<0.2

2 
78.64 51.2 0.52 0.15 15.60 94.30 19.00 29.40 

<0.0

1 

<0.0

1 

<0.1

2 

GW2 a 6.99 1413.0 198.5 
<0.2

2 
340.9 48.8 0.08 0.06 43.50 

219.9

0 
58.85 38.00 0.03 0.73 

<0.1

2 

GW3 a 7.56 698.0 0.9 <0.3 134.4 42.4 0.02 
<0.0

1 
15.00 

102.6

1 
8.25 12.72 

<0.0

1 
0.79 <0.3 

PW1 b 6.91 106 0.278 
<0.2

2 
7.28 7.6 0.14 0.06 2.37 8.77 6.75 4.18 0.01 

<0.0

1 

<0.1

2 

PW2 b 7.71 651.0 5.2 
<0.2

2 
165.5 46.3 0.02 0.02 14.80 82.65 13.20 29.70 

<0.0

1 
0.01 

<0.1

2 

Notes: a GW = groundwater; b PW = pond water. 

3.2. Pathogen’s Survival in Irrigation Water: Comparisons between Water Samples and Different 

Strains of Each Pathogen 

The pathogen’s survival was significantly different between the different irrigation water samples  

(p < 0.001). This was especially clear at 20 °C, and less at 4 °C. Besides that, irrigation water GW3 

showed a very different pathogen survival profile. In general, similar survival trends were observed for 

Salmonella Thompson and E. coli O157:H7 under the same experimental conditions, although some 

differences could be seen: E. coli O157:H7 MB3885 survived significantly better than Salmonella 

Thompson RM1987N in some test conditions, such as in sterilized GW1 (p < 0.001, Figure 2A,B) and 

sterilized PW2 at 20 °C (p < 0.001, Figure 3C,D) and in untreated GW3 at 4 °C (0.001 < p < 0.01,  

Figure 2E,F). To test whether the observed differences were strain specific or species specific,  

the survival of two more strains, Salmonella Typhimurium MB4880 and E. coli O157:H7 NCTC12900, 

was tested in the untreated water samples stored at 20 °C. The results for GW3 and PW1 are shown in 

Figure 4; the results for the other water samples can be found in the Supplemental Material, Figure S1. 

The survival of the two Salmonella strains was in general not significantly different from each other, 

whereas for the two E. coli O157:H7 strains, a difference in pathogen level up to 2.0 log CFU/mL existed 

when residing in the PW2 water at Day 14 after inoculation. In four of the five water samples, E. coli 

O157:H7 NTCT12900 survived less well than E. coli O157:H7 MB3885, whereas the opposite was observed 

in GW3.  
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Figure 2. Survival of E. coli O157:H7 MB3885 (left) and Salmonella Thompson RM1987N 

(right) in three ground water samples with the following treatments: untreated water samples 

stored at 4 °C (full line, ), filter sterilized water samples stored at 4 °C (dashed line, ), 

untreated water samples stored at 20 °C (full line, ), filter sterilized water samples stored 

at 20 °C (dashed line, ). The data show the mean of three analyzed vials and are calculated 

from the log transformed values of the pathogen population size. Error bars indicate standard 

deviations. Different letters indicate significant difference (p < 0.05) between means 

according to negative binomial regression. 
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Figure 3. Survival of E. coli O157:H7 MB3885 (left) and Salmonella Thompson RM1987N 

(right) in two pond water samples with the following treatments: untreated water samples 

stored at 4 °C (full line, ), filter sterilized water samples stored at 4 °C (dashed line, ), 

untreated water samples stored at 20 °C (full line, ), filter sterilized water samples stored 

at 20 °C (dashed line, ). The data show the mean of three analyzed vials and are calculated 

from the log transformed values of the pathogen population size. Error bars indicate standard 

deviations. Different letters indicate significant difference  

(p < 0.05) between means according to negative binomial regression. 

 

3.3. The Resident Background of Heterotrophic Microorganisms in the Irrigation Water Samples 

The population dynamics of the heterotrophic background microbiota are shown in Figure 5.  

The initial counts varied from 1.81 ± 0.30 log CFU/mL to 5.00 ± 0.08 log CFU/mL between the different 

irrigation water samples and increased during the 14-day storage experiment. Levels up to  

6.98 ± 0.16 log CFU/mL were observed in GW2 at 4 °C at Day 14. The increase was faster,  

but not higher at 20 °C (within two days) than at 4 °C. The counts were not significantly different from 

the level of resident bacteria in the non-inoculated irrigation water samples. No statistically significant 

correlation could be found between the growth/die off rate of the pathogens and the heterotrophic 

background microbiota for any of the water samples. 
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Figure 4. Survival of Salmonella Typhimurium MB4880 (), Salmonella Thompson 

RM1987N (), E. coli O157:H7 MB3885 (□) and E. coli O157:H7 NCTC12900 (○) in 

untreated irrigation water stored at 20 °C. Pathogen suspensions in (A) groundwater 3;  

(B) pond water 2. The data show the mean of three analyzed vials and are calculated from 

the log transformed values of the pathogen population size. Error bars indicate standard 

deviations. Different letters indicate significant difference (p < 0.05) between means 

according to negative binomial regression. 

 

Figure 5. Plate counts of heterotrophic background microbiota residing in the five irrigation 

water samples (Ground Water 1 (), Ground Water 2 (), Ground Water 3 (), Pond Water 

1 (), Pond Water 2 (○)) stored at 4 °C (A) and 20 °C (B). The data show the mean of three 

analyzed vials and are calculated from the log transformed values of the heterotrophic 

background population size. Error bars indicate standard deviations.  

 

3.4. Pathogen Survival on Butterhead Lettuce Leaves: Influence of the Inoculum Carrier 

The preliminary test showed that the GFP plasmid remained present in both strains; green fluorescence 

was detected in more than 99% of the colonies up to the end of the test (Day 10). When Salmonella and 

E. coli O157:H7 were suspended in PBS, GW3 or PW2 as the carrier to inoculate lettuce leaves, 

significantly different concentrations of these pathogens were recovered from the leaves (Figure 6)  
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(0.01 < p < 0.05). The highest concentrations were recuperated from leaves inoculated with suspensions in 

PBS and then followed by the variant in PW2. In contrast, when inoculated in GW3 water, the amount 

of pathogens on the leaves declined. E. coli O157:H7 MB3885 and Salmonella Thompson behaved  

in a similar way.  

Figure 6. Levels of GFP labeled E. coli O157:H7 MB3885 (A,C) and GFP labeled 

Salmonella Thompson RM1987N (B,D) from two independent repeats, recovered from 

lettuce leaves at three time points after inoculation with the pathogens suspended in 

phosphate buffer-saline (), pond water 2 () or ground water 3 (). Data presented are 

calculated from the log transformed values of the pathogen population size on three leaf 

samples and expressed per gram of leaf tissue. Error bars indicate standard deviations.  

At each day, different letters indicate significant difference (p < 0.05) between means of 

pathogen level according to Kruskal-Wallis non-parametric test. 
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4. Discussion 

This study was conducted to evaluate the extent to which enteric pathogens survive in irrigation water 

from different origin and quality and to have a first estimate of the implication for contamination of fresh 

green produce. We used butterhead lettuce as the test plant. Lettuce cultivation in a greenhouse is 

common in Belgium, and irrigation water reservoirs were sampled on five different production sites. In 

the first part of our study, the survival of E. coli O157:H7 and Salmonella was followed in artificially 

inoculated irrigation water samples from different Belgian lettuce production sites. The influence of 

temperature, the presence of resident aquatic microbiota, chemical water quality or pathogen strain was 

tested. A schematic summary and tentative interpretation of our results performed at 20 °C is shown in 

Table 3. 

For natural waters, it is known that temperature has a significant effect on the survival of enteric  

pathogens [7], with better survival at lower temperatures [26,27]. This was also seen in the present 

experiment in the untreated water samples. However, in the filter sterilized water samples, the opposite was 

observed. In three irrigation water samples, even growth of the pathogen could be noticed at 20 °C.  

These results are in accordance with Vital et al. [28,29], who have shown that growth of E. coli O157:H7 

can be observed in sterilized natural freshwater at low carbon concentrations when the initial inoculation 

concentration is not higher than the so-called “carrying capacity” of the water. This may also indicate that 

sterilized irrigation water could be a risk factor when the contamination event occurs after the sterilization 

treatment. By comparing the pathogen survival in both filter sterilized and untreated water samples,  

the influence of the presence of the heterotrophic background microbiota and the chemical water quality 

could be determined. In general, the survival of E. coli O157:H7 and Salmonella was significantly better in 

the sterilized water samples. This indicates that for these samples, competition with the resident aquatic 

microbiota may be responsible for the decline of the pathogens in the untreated water samples.  

Bacterial competition is a very complex process for which the current state of knowledge of the 

contributing factors (such as nutrient dynamics, concentrations of competing species) is very limited for 

natural waters [28]. These issues were also addressed in a simulation model for the decline of  

E. coli O157:H7 in various natural substrates [30]. Furthermore, also the presence of protozoa may have 

influenced the survival of enteric pathogens in irrigation water. Ravva et al. has shown that selected 

types of protozoa preferentially engulf specific isolates of E. coli O157:H7, while some protozoa engulf 

the pathogen in the presence of specific nutrients [31,32]. This may be one of the factors that can explain 

the pronounced differences that were observed for the two E. coli O157:H7 strains, but the hypothesis 

could not be confirmed, as protozoal counts were not performed.  

 



Int. J. Environ. Res. Public Health 2014, 11 10118 

 

 

Table 3. Schematic overview of the results of survival of Salmonella and E. coli O157:H7 in 5 irrigation water samples which were previously 

filter sterilized or not and subsequently stored at 20 °C. 

Water 

Sample 

Initial Level Resident 

Heterotrophic Bacteria 
Endpoint Pathogen Level Tentative Interpretation 

  
in presence of aquatic biota  

(in untreated water) 

in absence of aquatic 

biota (in filter  

sterilized water) 

combination of competitive survival 

and growth and nutrient availability 

risk of pathogen transfer 

when using non-sterilized 

irrigation water 

risk of pathogen transfer in case 

of pathogen contamination  

of sterilized water 

GW1 low high very high 

-very low pathogen suppression  

(low bacterial background load)  
high very high 

-nutrients for pathogen  

growth available 

GW2 medium low high 

-important pathogen suppression  

by resident aquatic biota 

low high -limited nutrients for pathogen 

growth available 

-high Zn level 

GW3 low low low 

-important pathogen suppression  

but not by the resident aquatic biota 

low low 
-the pathogen does not survive in  

this water, although the  

bacterial background does 

-high Zn level 

PW1 high low very high 

-important pathogen suppression  

by resident aquatic biota 
low very high 

-nutrients for pathogen  

growth available 

PW2 medium medium very high 

-weaker pathogen suppression  

by resident aquatic biota 
medium very high 

-nutrients for pathogen growth 

available 

.
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In two water samples (GW2 and GW3), the pathogen behavior in the untreated samples could not 

(only) be explained by competition with the resident aquatic microbiota. In GW2 the survival of the 

pathogen was significantly better in the sterilized water sample, but no growth could be observed;  

and in GW3, no difference in survival was seen between the untreated and filter sterilized water.  

This may indicate that for these water samples, also the chemical water quality may have had a 

significant influence on the survival of the pathogen. One of the factors that may explain these results is 

the fact that water samples were characterized by a higher Zn concentration. For GW3, we could show 

that this high concentration originated most likely from galvanized irrigation pipes and the irrigation 

storage tank, as the water that was sampled directly from the borehole reservoir was characterized by a 

much lower Zn concentration. When a survival experiment was conducted with this borehole water 

sample, growth of the pathogen could be observed in the sterilized water sample (data not shown). Toxic 

effects of zinc on bacteria have been reported [33]. It was shown that a concentration of 0.25 mg/L has 

a direct toxic effect (20 min) on E. coli and that a longer exposure time significantly increases the 

sensitivity of E. coli to metal pollutants [33]. In a similar survival experiment as ours, Avery et al. [34] 

found a significant negative correlation between the mean log CFU E. coli O157:H7 and log Zn 

concentration. In GW2, very high levels of zinc were found, as well, yet differences in filtering did 

change the pathogen survival. This may indicate that the Zn-complex in the two water samples was not 

the same. Furthermore, other toxic chemical elements may have been present in GW3, which were not 

analyzed, or synergistic effects between different chemical elements could have occurred [33].  

These results (influence competition microbiota, chemical composition) show high similarities with 

the survival of enteric pathogens in various other natural substrates, such as manure and slurry [35]. 

In the second part of our study, two of the artificially inoculated water samples were used to introduce 

the pathogens onto butterhead lettuce leaves to evaluate their subsequent survival. These results were 

compared with PBS as the inoculum carrier, together with sterile distilled water and other standard sterile 

buffers commonly used. Only a few studies have used irrigation water as the inoculum carrier [36,37], 

probably because this makes it more difficult to repeat the experiment in exactly the same conditions. 

To our knowledge, only Theofel and Harris [38] and Choi et al. [39] have investigated the influence of 

the inoculum carrier on the subsequent survival of the pathogen on leafy greens. Theofel and Harris did 

not find significant differences when Milli Q water, 0.1% peptone water or pond water was used as an 

inoculum carrier to deliver E. coli O157:H7 to fresh-cut lettuce that was subsequently stored at either 5 

or 20 °C. Although the average inoculum level was comparable with our study, the inoculation method 

was different. We used a 300-times higher inoculum volume with a hundred-times lower inoculum level. 

Furthermore, the pathogen was more evenly distributed on the leaves with our dip inoculation method 

in comparison with their spot inoculation. This may explain why we were able to observe a significant 

effect of the inoculum carrier, although also other experimental factors could have played a role (different 

strain, lettuce variety, storage temperature, etc.). Choi et al. were able to see differences in E. coli 

O157:H7 survival on lettuce when sterile distilled water or peptone water as inoculum carrier was used, 

with better survival with peptone water. They used 100 µL inoculum for each leaf and suggested that 

the organic matter in peptone water protects E. coli O157:H7 from environmental stresses and/or 

provides nutrients to support colonization in an environment with 100% relative humidity. In our test, 

the pathogen’s survival on the plant was comparably better when introduced in PBS, but with the current 

experimental design, it was not possible to explain whether this effect was due to the absence of resident 
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background microbiota in the sterile buffer, the chemical composition of the irrigation water samples or a 

combination of these factors. 

We chose to perform the experiment with detached butterhead leaves with the same leaf age in 

conditions of high relative humidity in order to keep the variation as low as possible [25,38].  

This is important when small differences in the survival of enteric pathogens on fresh produce need to 

be investigated. However, even under these standardized conditions, the survival between the different 

repeats were significantly different, although the same trends could always be observed: better survival 

on the lettuce when introduced with PBS as the inoculum carrier, less survival when introduced  

with GW3. The tested high humidity conditions (100%) are, however, not typical of preharvest 

conditions. Under drier conditions, it is therefore likely that populations of both groups would have 

declined, such as described previously, and it would have been difficult to discern an effect of the 

irrigation water quality on the overall pathogen survival [40,41]. 

In order to test the hypotheses that were put forward in this study and to investigate the impact of the 

irrigation water quality on enteric pathogen’s survival on lettuce under commercial growth conditions 

in detail, further research is required. In such follow up studies, a higher number of water samples should 

be investigated, and the experiments should be repeated in time, in order to take the chemical and 

microbiological variability of the water into account. Furthermore, it should be interesting to characterize 

the nutrient availability of the water samples in more detail, e.g., by measuring the dissolved organic 

content (DOC) per unit microbial biomass [9,21], and to determine the low pathogen levels more 

accurately, e.g., by applying the most probable number method (MPN-method). 

5. Conclusions 

Our study confirms that the survival of Salmonella and E. coli O157:H7 may vary between different 

irrigation water samples. The individual pathogen’s fitness for leaf colonization at high relative humidity 

seems to be influenced by the quality of the irrigation water. 
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