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ABSTRACT

Neutral particles in the plasma edge of fusion devices based on magnetic confinement are described by a transient kinetic equation
incorporating ionization, recombination, and charge-exchange collisions. In charge-exchange dominated regimes, the neutral particle veloc-
ity distribution approaches the drifting Maxwellian defined by the mean velocity and temperature of the plasma. This enables model order
reduction from the kinetic equation to approximate fluid models. We derive transient fluid models consistent with the kinetic equation by
exploring a splitting based approach. We split the kinetic equation in sources and sinks on the one hand, and transport combined with
charge-exchange on the other hand. Combining transport with charge-exchange collisions allows for deriving Hilbert expansion based fluid
models. The retrieved fluid models depend on the assumed importance (scaling) of the different terms in the split equation describing trans-
port and charge-exchange. We explore two scalings: the hydrodynamic scaling and the diffusive scaling. The diffusive scaling fluid model
closely resembles phenomenological fluid models for describing neutral particles in the plasma edge that have been derived in the past.
Therefore, the Hilbert expansion based fluid models can serve as a theoretical basis for such phenomenological fluid models and elucidate
some of their properties. The performance of the fluid models with respect to a discrete velocity model and a Monte Carlo reference solver is
assessed in numerical experiments. The code used to perform the numerical experiments is openly available.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146158

I. INTRODUCTION

Numerical modeling of the plasma edge plays an essential role in
understanding and designing magnetic fusion devices.1,2 Plasma edge
simulation codes need to account for the complex interplay between
plasma transport, impurity transport, plasma-wall interactions, and
collisional processes with neutrals. The behavior of the neutral par-
ticles, present in the plasma edge of a fusion device, is governed by a
transient kinetic equation that describes particle transport and several
collisional processes.1,3,4 The solution of this kinetic equation is called
the particle velocity distribution and determines how the neutral par-
ticles are distributed in space and velocity throughout time.

Modeling the neutral particles poses two main difficulties. First,
the kinetic description of the neutral particle behavior is high-

dimensional, as both the position and the velocity of the particles are
resolved. Second, the rapid succession of particle interactions in high-
collisional regimes results in stiff dynamics.5 To reduce the computa-
tional cost when simulating the neutral particle behavior, model order
reduction techniques can be considered that avoid resolving the particle
velocities. These reduced models are called fluid models. Ideally, a fluid
model is equipped with an approximation of the particle velocity distri-
bution, from which a variety of macroscopic quantities of interest
(QoIs) can be estimated. These QoIs, e.g., the particle, momentum, and
energy density of the neutral particles, can then be expressed as integrals
of this approximate particle velocity distribution over velocity space.

The literature on fluid models describing neutrals in the plasma
edge mainly focuses on solving steady-state problems using models

Phys. Plasmas 30, 063907 (2023); doi: 10.1063/5.0146158 30, 063907-1

Published under an exclusive license by AIP Publishing

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

 11 August 2023 09:49:30

https://doi.org/10.1063/5.0146158
https://doi.org/10.1063/5.0146158
https://doi.org/10.1063/5.0146158
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0146158
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0146158&domain=pdf&date_stamp=2023-06-27
https://orcid.org/0000-0002-8373-8865
https://orcid.org/0000-0003-1954-3729
https://orcid.org/0000-0002-8822-461X
https://orcid.org/0000-0001-9905-4583
https://orcid.org/0000-0001-8433-4523
mailto:vince.maes@kuleuven.be
https://doi.org/10.1063/5.0146158
pubs.aip.org/aip/php


based on a variant of the Method of Moments.6–19 These fluid models
typically introduce approximations and simplifications (e.g., discard-
ing terms or adding additional constraints) in the fluid description
based on an intuitive, phenomenological basis. Incorporating knowl-
edge of domain experts, these models are accurate given the right
physical conditions, but have a rather unclear range of validity and
offer no consistent approximation to the particle velocity distribution.
Such phenomenological fluid models have been developed in four of
the major tokamak plasma edge modeling code bases: B2(.5)-
EIRENE,6–8 SolEdge2D-EIRENE,12,20 EDGE2D-NIMBUS,9–11 and
UEDGE-DEGAS,13–18 where they provide an alternative to the more
involved Monte Carlo codes (EIRENE, NIMBUS, and DEGAS) for
treating the neutral particles. Similar fluid models have also been
implemented in codes for stellarator plasma edge modeling, such as
the BoRiS code.19 In this paper, we attempt to obtain fluid models that
are similar to the phenomenological fluid models that have been
derived in the past, but based on a more systematic, mathematically
rigorous approach. As we will see, following a systematic approach
clarifies some of the properties of the fluid models, such as their range
of validity and their approximate particle velocity distribution.

The difficulties introduced by high dimensionality and high colli-
sionality are not restricted to the setting of neutrals in the plasma edge,
but arise in many applications, such as the kinetic modeling of rarefied
gases,21 chemotaxis,22,23 neutron transport, and radiative transfer.24

Consequently, there exists a vast literature on the derivation of fluid
models from kinetic equations. Two classical approaches lead to fluid
models equipped with an approximate particle velocity distribution.
The first approach, the Method of Moments, as pioneered by
Grad,25,26 selects a function space based on an ansatz and approxi-
mates the particle velocity distribution by an infinite expansion in the
basis functions of that space. A moment model is then defined by a
suitable closure (e.g., truncating the expansion after a finite number of
terms) that allows for the derivation of a closed set of fluid equations
for the expansion coefficients (the so-called moments). The method is
rooted in approximation theory and has some interesting proper-
ties27,28 if the moment model converges to the solution of the kinetic
equation for increasing number of moments. There is, however, no
guarantee that the moment model will converge.29 One of the main
advantages of a convergent moment model is that the performance
can easily be improved by adding more terms to the closed expansion.
A drawback of the method is that the chosen function space and clo-
sure determine the assumptions that are included in the moment
model, but the physical interpretation of these assumptions is not
always directly clear. A second drawback is that the stiffness of the
dynamics in high-collisional regimes has to be solved by specialized
techniques, such as projective integration.30,31

The second classical approach explores the behavior of the sys-
tem close to equilibrium by using perturbation theory.32 The approach
consists of deriving a so-called Hilbert expansion around the equilib-
rium state that leads to a closed set of fluid equations.21,24 A Hilbert
expansion is derived by scaling each of the terms in the kinetic equa-
tion using a non-dimensional scaling parameter e� 1 to a given
power. The scaling parameter appears after suitable non-
dimensionalization of the kinetic equation and explicitly and systemat-
ically introduces physical assumptions about which terms are large
and which are small. The particle velocity distribution itself is also
expanded in terms of e. The idea is that in the limit e! 0, terms with

a given order in e have to balance each other as terms with another
order in e are an order of magnitude larger or smaller and therefore
can never balance the terms under consideration, i.e., terms with dif-
ferent orders in e decouple. This decoupling constitutes a mathemati-
cally rigorous way to derive fluid models close to equilibrium, where
taking the limit e! 0 can be interpreted as an idealization of the
introduced physical assumptions. The dynamics of the resulting fluid
models is independent of � and does not become stiff in the high-
collisional limit.

Applying model order reduction techniques, such as the Method
of Moments or a Hilbert expansion based approach, directly to com-
plicated kinetic equations can lead to intricate fluid models with a nar-
row range of validity. One way around this problem is to introduce
operator splitting.33 Operator splitting allows to split kinetic equations
in several parts which can then be treated separately. One such
approach splits the kinetic equation in transport and event equations,
where events can comprise collisions, sources, and sinks.34,35 The split
equations can then be treated separately, e.g., by a moment model.
The event equations typically pose no difficulties, as the different
moments are independent of each other, leading to a closed set of fluid
equations. The moments of the transport equation, however, are cou-
pled in such a way that an infinite chain of fluid equations is generated,
which has to be solved by introducing a closure.

The goal of this paper is to derive transient fluid models,
equipped with an approximate particle velocity distribution and a clear
range of validity, which accurately describe the neutral particle behav-
ior in the plasma edge in high-collisional regimes and can be used as a
rigorous basis for the development of hybrid fluid/Monte Carlo meth-
ods.36–39 The followed approach splits the kinetic equation in trans-
port combined with charge-exchange collisions on the one hand, and
sources and sinks on the other hand. Instead of taking moments of the
equation describing transport and charge-exchange collisions, our
focus will be on a Hilbert expansion based route toward fluid models.
The Hilbert expansions treat introduced assumptions in a clear and
rigorous way, allowing for statements about accuracy and range of
validity. Additionally, the Hilbert expansion has an explicit expression
for its particle velocity distribution approximation underlying the
resulting fluid model. This approximate particle velocity distribution
can then be used to evaluate a variety of velocity dependent QoIs,
without actually having to resolve the velocity of the neutral particles
as is done when solving the kinetic equation directly. The fluid models
are derived in the transient setting, allowing for transient simulations
of the plasma edge. The focus of this paper is on the bulk of the plasma
edge, i.e., without the typical, complex boundary interactions3,6

describing among others the interactions with the divertor targets. We
therefore only implement periodic boundary conditions and leave the
more advanced boundary conditions for future work.

The rest of the paper is structured as follows. Section II describes
the kinetic equation governing the neutral particle behavior in more
detail and explains the splitting approach used for deriving the fluid
models. Section III treats the Hilbert expansion based fluid models for
the split equation describing transport and charge-exchange. Next, in
Sec. IV, we discuss how the different fluid models and estimators for
the QoIs can be discretized and implemented. Verification of the
derived fluid models is done by comparison with a discrete velocity
model40 and a particle tracing Monte Carlo method.4,41 In Sec. V,
three numerical experiments are performed to showcase the
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performance of the fluid models compared to the two reference solu-
tions. Finally, Sec. VI summarizes the conclusions of this paper. The
code accompanying this paper is openly available in a Zenodo
repository.42

II. KINETIC EQUATION DESCRIBING NEUTRALS IN THE
PLASMA EDGE

This paper focuses on a simplified transient kinetic equation
describing neutral particles in a plasma background medium with a
1D physical and velocity space: x 2 D � R; v 2 R; t � 0. The
domainD in which we want to solve the kinetic equation can be subdi-
vided in the bulk and the boundary, where the boundary treatment, in
general, can be quite complex.3,6 In this paper, we focus on the neutral
particle description in the bulk of the domain by taking periodic
boundary conditions. The kinetic equation for which we derive fluid
models reads as follows:

@t f ðx; v; tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
transient

þ v@xf ðx; v; tÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
transport

¼ Sðx; v; tÞ|fflfflfflffl{zfflfflfflffl}
source

�Riðx; tÞf ðx; v; tÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ionization sink

þRcxðx; tÞ Mðvjx; tÞ
ð
f ðx; v0; tÞdv0 � f ðx; v; tÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

charge-exchange collision operator

; (1)

where f ðx; v; tÞ, the particle velocity distribution, represents the den-
sity of particles at time t with a given position x and velocity v;
Sðx; v; tÞ is the source describing how many neutrals are created at a
position x with velocity v per unit of time; the ionization rate Riðx; tÞ
and the charge-exchange rate Rcxðx; tÞ are known functions that
depend on the background plasma state;6 Mðvjx; tÞ is the normalized
drifting Maxwellian describing the velocity distribution of the ions in
the background plasma with mean velocity upðx; tÞ and variance
r2
pðx; tÞ (related to the ion temperature Tiðx; tÞ):

Mðvjx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

pðx; tÞ
q exp � 1

2

ðv � upðx; tÞÞ2

r2
pðx; tÞ

 !
: (2)

This Maxwellian represents the post-collisional velocity distribution of
the neutral particles: after a charge-exchange collision between a neu-
tral and an ion plasma particle, the neutral gets a velocity that is dis-
tributed according to the plasma velocity distribution.4 The moments
upðx; tÞ and r2

pðx; tÞ of the Maxwellian are known from the plasma,
rendering the kinetic equation (1) linear. In the literature, linear kinetic
equations are sometimes referred to as linear transport
equations.22,23,43–46

In neutral particle modeling, we are interested in some QoIs that
are typically moments of the particle velocity distribution f ðx; v; tÞ,
i.e., integrals over velocity space of the following form:

Qðx; tÞ ¼
ð
qðvÞf ðx; v; tÞdv; (3)

where q(v) is a function of velocity. In this paper, we focus on the neu-
tral particle density qðx; tÞ, momentum density m(x, t), and energy
density E(x, t), the three lowest order moments of the particle velocity
distribution, which are defined as follows:

qðx; tÞ ¼
ð
f ðx; v; tÞdv;

mðx; tÞ ¼
ð
vf ðx; v; tÞdv;

Eðx; tÞ ¼
ð
v2

2
f ðx; v; tÞdv;

(4)

where mðx; tÞ :¼ qðx; tÞuðx; tÞ and 2Eðx; tÞ :¼ qðx; tÞðuðx; tÞ2
þ r2ðx; tÞÞ. In these relations, u(x, t) and r2ðx; tÞ denote the mean
velocity and variance on the velocity of the neutral particles. In the
notation of Eq. (3), we have Qðx; tÞ ¼ fqðx; tÞ;mðx; tÞ;Eðx; tÞg and
qðvÞ ¼ f1; v; v2=2g.

A. Splitting of the kinetic equation

To obtain a Hilbert expansion based fluid model, the relative
importance of the effects included in the kinetic equation (1) has to be
assessed. As will be discussed in Sec. IIIA, deciding on the importance
of the different terms in a complex kinetic equation tends to be a con-
voluted endeavor. To facilitate the derivation of a fluid model, first, the
kinetic equation is split in sources (5a), conservative processes (5b)
(transport and charge-exchange in this case), and sinks (5c) (ioniza-
tion in this case):

@t f ðx; v; tÞ ¼ Sðx; v; tÞ; (5a)

@t f ðx; v; tÞ þ v@xf ðx; v; tÞ

¼ Rcxðx; tÞðMðvjx; tÞ
ð
f ðx; v0; tÞdv0 � f ðx; v; tÞÞ; (5b)

@t f ðx; v; tÞ ¼ �Riðx; tÞf ðx; v; tÞ: (5c)

The performed operator splitting introduces a first order dis-
cretization error in time.33,45 Note that such a time discretization
error will be present in the discretized fluid models anyway, so this
is not problematic. Let us first discuss the source equation (5a) and
ionization equation (5c). These equations only contain a derivative
with respect to time and can therefore be solved using a simple
time stepping scheme. Discretizing with forward Euler, the
approximate solution of the source equation (5a) after a time step
Dt can be written as

f ðx; v; t0 þ DtÞ � f ðx; v; t0Þ þ Sðx; v; t0ÞDt: (6)

The approximate solution of the ionization equation (5c) after a time
step Dt can be written as

f ðx; v; t0 þ DtÞ � exp ð�Riðx; t0ÞDtÞf ðx; v; t0Þ: (7)

The interpretation of this equation is simply that a fraction of par-
ticles exp ð�Riðx; t0ÞDtÞ did not undergo an ionization collision
during the time Dt and is still present in the domain at time
t0 þ Dt. A fraction ð1� exp ð�Riðx; t0ÞDtÞÞ of the particles did
undergo an ionization collision during the time Dt and disap-
peared in the ionization sink.

Obtaining a fluid model version of the source and ionization
equation requires taking moments of the split kinetic equations.
By taking moments of these equations, we retrieve the split
fluid equations governing the influence of the source and ioniza-
tion on the macroscopic QoIs. For the source equation (5a), we
find
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Qðx; t0 þ DtÞ � Qðx; t0Þ þ Dt
ð
qðvÞSðx; v; t0Þdv: (8)

When the velocity dependence of the source Sðx; v; tÞ is known,
e.g., a local drifting Maxwellian (2), the integral on the right hand side
can readily be evaluated. For the ionization equation (5c), we find

Qðx; t0 þ DtÞ � exp ð�Riðx; t0ÞDtÞQðx; t0Þ; (9)

showing that a fraction of the QoIs is lost in the ionization sink.
The main difficulties in obtaining a fluid model from the split

equations (5a)–(5c) are posed by the conservation equation (5b). We
treat this equation using a Hilbert expansion in the Sec. III.

III. HILBERT EXPANSION BASED FLUID MODELS

In high-collisional regimes, the charge-exchange collision opera-
tor on the right hand side of the conservation equation (5b) defines a
collisional equilibrium, which enables model order reduction of the
kinetic equation to a fluid model by means of a Hilbert expansion.
Note that the charge-exchange collision operator is a linear BGK-like
collision operator47 describing neutral particles that only collide with
the background plasma and not with themselves. The mean velocity
and variance of the Maxwellian (2) are therefore defined by the plasma
(upðx; tÞ; r2

pðx; tÞ). This is in contrast to the Boltzmann-BGK collision
operator for self-collisions in rarefied gas dynamics, where the mean
velocity and variance of the Maxwellian correspond to the ones of the
particle velocity distribution f ðx; v; tÞ itself, making the collision oper-
ator non-linear.21 Additionally, the Boltzmann-BGK collision operator
has three collisional invariants (conservation of particles, momentum,
and energy), whereas the charge-exchange collision operator only has
one (conservation of particles), as momentum and energy are
exchanged with the background plasma (see Appendix C). These
properties of the charge-exchange collision operator lead to different
fluid models than the typical Euler or Navier–Stokes equations
obtained for Boltzmann equations describing rarefied gases with self-
collisions.21,24

A. Hilbert expansions

Hilbert expansions have three main assumptions:

• Some terms in a kinetic equation are more important than
others.

• Derivatives are sufficiently mild.
• The particle velocity distribution f ðx; v; tÞ is close to an
equilibrium.

To make these assumptions mathematically rigorous, a small
scaling parameter 0 � e� 1 is introduced. Each term of the kinetic
equation is assigned a scaling ek with k 2 Z, where increasing the
exponent corresponds to decreasing the importance of that term. The
physical interpretation is that we normalize each quantity g as g ¼ ek~g
such that ~g � Oð1Þ, meaning that the magnitude of each quantity is
captured explicitly by the scaling ek. The assumption that derivatives
are sufficiently mild enforces that they do not change a quantity’s
order in e, e.g., @xðekgðx; v; tÞÞ ¼ ek@xgðx; v; tÞ (if a function gðx; v; tÞ
is of order k, then its derivatives are as well). A set of physical assump-
tions on the importance of different terms in a kinetic equation is
called a scaling. Two such scalings are treated in Secs. IIIC and IIID.
Typically, kinetic equations are assumed to be dominated by the

collision operator,21,22,24,43,44 resulting in a collision dominated equi-
librium around which an expansion can be constructed. We define a
Hilbert expansion as follows:

f ðx; v; tÞ � f0ðx; v; tÞ þ ef1ðx; v; tÞ þ e2f2ðx; v; tÞ þ 	 	 	 ; (10)

where f0ðx; v; tÞ represents the equilibrium and fiðx; v; tÞ; i � 1,
higher order perturbations. We then insert this Hilbert expansion in
the scaled kinetic equation. Taking the limit e! 0 where ek 
 ekþ1,
terms with a different order k in e decouple as they cannot influence
each other. This limit, a mathematical idealization of the made
assumptions, leads in a natural way to a closed set of macroscopic evo-
lution equations: a fluid model.

Closed fluid models have as many evolution equations as degrees
of freedom. The only degrees of freedom in a Hilbert expansion are
those present in the collision dominated equilibrium f0ðx; v; tÞ. The
Boltzmann-BGK collision operator has three degrees of freedom:
qðx; tÞ, u(x, t), and r2ðx; tÞ, so in that case fluid models consist of
three evolution equations. The charge-exchange collision operator
only has one degree of freedom: qðx; tÞ, so the resulting fluid models
consist of just one evolution equation. We can, therefore, reduce the
high-dimensional linear kinetic equation to a single macroscopic evo-
lution equation. Other velocity dependent QoIs follow from inserting
the Hilbert expansion ansatz (10) in the velocity space integral (3).

Only having transport and charge-exchange in Eq. (5b) allows
for making clear statements about the importance of the different
terms by means of the scaling parameter e. Putting more effects in the
Hilbert expansion requires the introduction of more and more
assumptions on the relative importance of the terms, narrowing down
the range of validity of the fluid model, as the extent to which the
assumptions hold decreases. That is why we split the source and sink
terms, for which taking moments does not result in an infinite hierar-
chy of equations, from the kinetic equation that is reduced using a
Hilbert expansion (see Sec. II).

B. Fredholm alternative and self-adjoint operators

During the derivation of Hilbert expansion based fluid models,
so-called solvability conditions are encountered. To construct these
solvability conditions, the Fredholm alternative can be exploited. The
Fredholm alternative states that for self-adjoint operators L , for
which the null space is orthogonal to the range, an inhomogeneous
equation L f ¼ g only has a solution f (g lies in the range of L ) if
hg; hi ¼ 0 for all h in the null space of the operator.48,49 To apply this
to the Hilbert expansion derivations, we first search for a weighted
inner product for which the charge-exchange collision operator

L f ðvÞ :¼ Rcx MðvÞ
ð
f ðv0Þdv0 � f ðvÞ

� �
(11)

is self-adjoint (we ignore the dependence on x, t for a moment as the
collision operator only acts on v). The required weighted inner prod-
uct, which we denote by h	; 	iL , has wðvÞ ¼ MðvÞ�1 as weight
function:

hf ðvÞ; gðvÞiL :¼
ð
f ðvÞgðvÞMðvÞ�1dv: (12)

For that choice of weight function, we indeed obtain that Eq. (11) is
self-adjoint:
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hL f ðvÞ; gðvÞiL ¼ hf ðvÞ;L gðvÞiL : (13)

Using this inner product, the Fredholm alternative can be used to
determine under which conditions inhomogeneous equations of the
formL f ðvÞ ¼ gðvÞ are solvable. Given the functions h(v) that span the
null space of the self-adjoint operator: L hðvÞ ¼ 0, the Fredholm alter-
native dictates that hgðvÞ; hðvÞiL ¼ 0 has to hold, for each conceivable
h(v), for g(v) to be in the range of the operatorL . These inner products
that have to be zero are constraints that we call solvability conditions.

For the charge-exchange collision operator (11), the null space
(for Rcx 6¼ 0) is governed by the following equation:

0 ¼ Rcx MðvÞ
ð
hðv0Þdv0 � hðvÞ

� �
) hðvÞ ¼ MðvÞ

ð
hðv0Þdv0: (14)

Without loss of generality, normalizing the functions spanning the
null space ð

hðvÞdv ¼ 1 (15)

results in hðvÞ ¼ MðvÞ.
It follows that the solvability condition for functions g(v) to be in

the range of the charge-exchange collision operator is given by

hgðvÞ; hðvÞiL ¼
ð
gðvÞMðvÞMðvÞ�1dv ¼

ð
gðvÞdv ¼ 0: (16)

The solvability condition dictates that only zero mean functions are in
the range of the charge-exchange collision operator.

C. Diffusive scaling Hilbert expansion

We now turn to the derivation of a Hilbert expansion based fluid
model for the split conservation equation (5b) in the so-called diffusive
scaling. A scaling refers to a set of physical assumptions that determines
with which order in e the different terms in the kinetic equation are
scaled. The physical assumptions in the diffusive scaling are as follows:

• The plasma particle velocities are high (see Appendix B): vp
� Oð1=eÞ, but the mean plasma particle velocity is relatively low:
upðx; tÞ � Oð1Þ. As a result, the peculiar velocities are high:
cpðx; tÞ ¼ vp � upðx; tÞ � Oð1=eÞ, meaning that the variance
on the plasma particle velocities scales as: r2

pðx; tÞ
¼
Ð
cpðx; tÞ2Mðvjx; tÞdv � Oð1=e2Þ. We are thus describing a

relatively slow plasma with a high temperature. Assuming that
the neutral particles are almost in equilibrium with the plasma
particles such that the neutral particle velocities v have the same
order of magnitude as the plasma particle velocities vp, we intro-
duce the following scaled variables: ~v ¼ ev; ~r2

pðx; tÞ ¼ e2r2
pðx; tÞ.

• Even though the neutral particle velocities are high, the mean
free path21 k has to be small, because otherwise the equation
would not be collision dominated and a fluid model would not
be sensible. Small values for k are achieved by assuming large val-
ues for the collision rate Rcxðx; tÞ. The requirement that
k � OðeÞ, such that k! 0 as e! 0, leads to the following scal-
ing for the collision rate: k � v=Rcxðx; tÞ � OðeÞ () Rcxðx; tÞ
� Oð1=e2Þ. We introduce the scaled variable: ~Rcxðx; tÞ
¼ e2Rcxðx; tÞ.

Remark 1: The scaled Maxwellian reads as follows:

~Mð~vjx; tÞ ¼ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p~r2

pðx; tÞ
q exp � 1

2

ð~v � eupðx; tÞÞ2

~r2
pðx; tÞ

 !

¼ eMð~vjx; tÞ: (17)

This can easily be verified by inserting the definitions of ~v and ~r2
pðx; tÞ

into the expression. The scaled Maxwellian thus has mean eupðx; tÞ
and variance ~r2

pðx; tÞ. Note that the Maxwellian is scaled by e due to
the presence of the scaled variance in the normalization constant.

Inserting the diffusive scaling into the kinetic conservation equa-
tion (5b) and multiplying by e2 results in

e2@t f ðx;~v; tÞ þ e~v@xf ðx;~v; tÞ

¼ ~Rcxðx; tÞ � Mð~vjx; tÞ
ð
f ðx;~v 0; tÞd~v 0 � f ðx;~v; tÞ

� �
: (18)

Recall that the mean plasma velocity upðx; tÞ scales differently than
the peculiar velocity cpðx; tÞ. Therefore, we decompose the transport
term in a mean part and a centered (zero-mean) part with respect to
the scaled Maxwellian (17) as explained in Refs. 43 and 45:

~v ¼ eupðx; tÞ þ ~cðx; tÞ; (19)

such that all scalings are explicitly present in the equation. Inserting
this decomposition in Eq. (18) yields

e2@t f ðx;~v; tÞ þ e2@x upðx; tÞf ðx;~v; tÞ
� �

þ e@x ~cðx; tÞf ðx;~v; tÞð Þ

¼ ~Rcxðx; tÞ Mð~vjx; tÞ
ð
f ðx;~v 0; tÞd~v 0 � f ðx;~v; tÞ

� �
: (20)

Because of the high collisionality, the neutral particles will be close to
their local equilibrium state. Therefore, we propose a Hilbert expan-
sion (10) for the particle velocity distribution. Inserting the Hilbert
expansion in the scaled kinetic equation (20) and writing equations
per order in e results in

e0 : 0 ¼ ~Rcxðx; tÞ Mð~vjx; tÞ
ð
f0ðx;~v 0; tÞd~v 0 � f0ðx;~v; tÞ

� �
;

e1 : @x ~cðx; tÞf0ðx;~v; tÞð Þ

¼ ~Rcxðx; tÞ Mð~vjx; tÞ
ð
f1ðx;~v 0; tÞd~v 0 � f1ðx;~v; tÞ

� �
;

e2 : @t f0ðx;~v; tÞ
þ @x upðx; tÞf0ðx;~v; tÞ

� �
þ @x ~cðx; tÞf1ðx;~v; tÞð Þ

¼ ~Rcxðx; tÞ Mð~vjx; tÞ
ð
f2ðx;~v 0; tÞd~v 0 � f2ðx;~v; tÞ

� �
;

..

.

ek : @t fk�2ðx;~v; tÞ
þ @x upðx; tÞfk�2ðx;~v; tÞ

� �
þ @x ~cðx; tÞfk�1ðx;~v; tÞð Þ

¼ ~Rcxðx; tÞ Mð~vjx; tÞ
ð
fkðx;~v 0; tÞd~v 0 � fkðx;~v; tÞ

� �
:

(21)

In the limit for e! 0, these equations decouple. The e0-equation is
called the leading order equation and only contains the equilibrium
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f0ðx; ~v; tÞ. Solving this equation therefore determines the equilibrium.
Note that the leading order equation is the same as Eq. (14), meaning
that the equilibrium resides in the null space of the charge-exchange
collision operator. Defining the particle density of the equilibrium
function as q0ðx; tÞ :¼

Ð
f0ðx;~v; tÞd~v , the equilibrium follows from a

straightforward manipulation:

f0ðx;~v; tÞ ¼ q0ðx; tÞMð~vjx; tÞ: (22)

To obtain the first order perturbation, we insert the result for
f0ðx; ~v; tÞ in the e1-equation (first order equation), resulting in

@x ~cðx; tÞq0ðx; tÞMð~vjx; tÞð Þ

¼ ~Rcxðx; tÞ � Mð~vjx; tÞ
ð
f1ðx;~v 0; tÞd~v 0 � f1ðx;~v; tÞ

� �
: (23)

This is an inhomogeneous integral equation. To have a solution
f1ðx; ~v; tÞ, the left hand side of the equation has to be in the range of the
charge-exchange collision operator on the right hand side. The solvabil-
ity condition is derived above in Eq. (16). Inserting the left hand side
into the solvability condition results in the following constraint:ð

@x ~cðx; tÞq0ðx; tÞMð~vjx; tÞð Þd~v ¼ 0;

@x q0ðx; tÞ
ð
ð~v � eupðx; tÞÞMð~vjx; tÞd~v

� �
¼ 0;

@x q0ðx; tÞ eupðx; tÞ � eupðx; tÞ
� �� �

¼ 0;

0 ¼ 0: �

(24)

Remark 2: By writing out the scaled velocity ~v as the sum of the
mean part eupðx; tÞ and peculiar part ~cðx; tÞ in Eq. (19), the solvability
condition is fulfilled automatically. If we had not done this, the
“hidden” scaling of the two components of the velocity would have led
us to the condition @xðq0ðx; tÞupðx; tÞÞ ¼ 0, which falsely states that
q0ðx; tÞ is completely determined given upðx; tÞ (corresponding to the
so-called steady-state scaling49).

Knowing that the e1-equation is solvable, the next step is to solve
it. Inverting the charge-exchange collision operator can only be done
using a pseudo-inverse on the range of the operator.22,48,49 This
requires the unknown f1ðx; ~v; tÞ to lie in the range of the charge-
exchange collision operator, i.e., f1ðx;~v; tÞ has to be a zero mean func-
tion. The implication is that the whole particle density has to be
included in the equilibrium term of the Hilbert expansion:
q0ðx; tÞ ¼

Ð
f0ðx;~v; tÞd~v ¼

Ð
f ðx;~v; tÞd~v ¼ qðx; tÞ. This allows forÐ

fkðx;~v; tÞd~v � 0; 8k > 0. With f1ðx;~v; tÞ a zero mean function, the
e1-equation becomes

@x ~cðx; tÞqðx; tÞMð~vjx; tÞð Þ ¼ �~Rcxðx; tÞf1ðx;~v; tÞ; (25)

from which the first order perturbation follows as

f1ðx;~v; tÞ ¼ �
1

~Rcxðx; tÞ
@x ~cðx; tÞqðx; tÞMð~vjx; tÞð Þ: (26)

Integrating this expression indeed shows that
Ð
f1ðx;~v; tÞd~v � 0

holds, as it should.
The next step in the derivation is to solve the e2-equation. The

solvability condition, using the found expressions for f0ðx;~v; tÞ and
f1ðx; ~v; tÞ, results in the following constraint:

ð
@tðqðx; tÞMð~vjx; tÞÞ þ @x upðx; tÞqðx; tÞMð~vjx; tÞ

� �
�@x

~cðx; tÞ
~Rcxðx; tÞ

@x ~cðx; tÞqðx; tÞMð~vjx; tÞð Þ
 !

d~v ¼ 0: (27)

Working out the integral, the following evolution equation is obtained:

@tqðx;tÞþ@xðupðx;tÞqðx;tÞÞ�@x
1

Rcxðx;tÞ
@x r2

pðx;tÞqðx;tÞ
� 	� �

¼0;

(28)

where the scalings of ~Rcxðx; tÞ and ~r2
pðx; tÞ cancel out such that the

equation does not depend on e anymore, making this a suitable equa-
tion for computations. Equation (28) governs the evolution of qðx; tÞ
and is of advection-diffusion type. Recall that upðx; tÞ and r2

pðx; tÞ are
known from the background plasma, so we have one equation for one
unknown, i.e., a closed fluid model. The shape of f2ðx; ~v; tÞ follows
directly from the e2-equation. In this paper, however, we settle for a
first order Hilbert expansion of the form f ðx;~v; tÞ � f0ðx;~v; tÞ
þ ef1ðx;~v; tÞ and set f2ðx;~v; tÞ � 0.

Remark 3: Note that it is not possible to go beyond a second order
perturbation. The solvability conditions for higher order perturbations
fkðx;~v; tÞ with k> 2 lead to the introduction of additional evolution
equations. Since the only unknown in the Hilbert expansion is qðx; tÞ,
this would result inmultiple incompatible evolution equations for the par-
ticle density. In the case of isotropic collision operators,22,23 the solvability
conditions are fulfilled automatically, allowing for higher order Hilbert
expansions. Here, however, the drifting Maxwellian (upðx; tÞ 6¼ 0) causes
the charge-exchange collision operator to be anisotropic, leading to a
(maximum) second order Hilbert expansion f ðx;~v; tÞ ¼ f0ðx;~v; tÞ
þef1ðx;~v; tÞ þ e2f2ðx;~v; tÞ þ Oðe3Þ, that is asymptotically consistent
with an error Oðe3Þ that disappears in the limit e! 0. Note that in Ref.
23, when the focus shifts away from isotropic collision operators, the
authors also limit themselves to second order Hilbert expansions.

Reverting back to unscaled variables, we find the following diffu-
sive scaling approximation to the particle velocity distribution:

f ðx; v; tÞ � f0ðx; v; tÞ þ ef1ðx; v; tÞ
¼ qðx; tÞMðvjx; tÞ

� 1
Rcxðx; tÞ

@xðcðx; tÞqðx; tÞMðvjx; tÞÞ: (29)

This approximation can be used to compute a variety of velocity
dependent QoIs.

1. Momentum and energy density

Expressions for the momentum and energy density can be
obtained by simply using their definitions (4) and inserting the first
order Hilbert expansion (29). For the momentum, we find

mðx; tÞ :¼
ð
vf ðx; v; tÞdv

�
ð
vðf0ðx; v; tÞ þ ef1ðx; v; tÞÞdv

¼ qðx; tÞupðx; tÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
equilibrium

� 1
Rcxðx; tÞ

@xðr2
pðx; tÞqðx; tÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

perturbation

: (30)
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As the scalings of Rcxðx; tÞ and r2
pðx; tÞ neutralize each other, it turns

out that the equilibrium and perturbation contribution to the momen-
tum are of equal importance. For the energy, we find

Eðx; tÞ :¼
ð
v2

2
f ðx; v; tÞdv

�
ð
v2

2
ðf0ðx; v; tÞ þ ef1ðx; v; tÞÞdv

¼ 1
2

r2
pðx; tÞ þ upðx; tÞ2

� 	
qðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

equilibrium

� 1
Rcxðx; tÞ

@xðupðx; tÞr2
pðx; tÞqðx; tÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

perturbation

: (31)

For the energy, the equilibrium contribution becomes increasingly
more important with respect to the perturbation contribution for e!
0 (because of the increasing value of r2

pðx; tÞ). Other velocity depen-
dent QoIs can be computed analogously.

2. Error estimate

For the first order Hilbert expansion f ðx; ~v; tÞ � f0ðx;~v; tÞ
þef1ðx;~v; tÞ, we can add second and third order error terms:
f ðx; ~v; tÞ � f0ðx; ~v; tÞ þ ef1ðx; ~v; tÞ þ e2r2ðx; ~v; tÞ þ e3r3ðx; ~v; tÞ.
Inserting this into the kinetic equation (5b) and elaborating the
expansion, we find that under the made assumptions
r2ðx;~v; tÞ ¼ f2ðx;~v; tÞ, because of the second order solvability condi-
tion [using Eq. (28) as evolution equation]. Consequently, r2ðx;~v; tÞ
has a zero particle density. The error term r3ðx;~v; tÞ on the other
hand has a non-zero particle density as it does not fulfill any solvability
condition. The fluid model will therefore be correct up to Oðe3Þ for
the density qðx; tÞ. For the momentum, energy and other velocity
dependent QoIs, the fluid model is only correct up to Oðe2Þ because
the second order error r2ðx;~v; tÞ has non-zero higher order velocity
moments.

Adding f2ðx;~v; tÞ to the Hilbert expansion, the error on velocity
dependent QoIs would also be Oðe3Þ. Recall that it is not possible to
solve the third or higher order solvability conditions for kinetic equa-
tions dominated by an anisotropic linear collision operator (Remark
3), meaning that having errors Oðe3Þ is the best that can be done with
a diffusive scaling Hilbert expansion. For kinetic equations dominated
by an isotropic linear collision operator, an arbitrary order in e can be
obtained.22

In conclusion, obtaining errors Oðe3Þ is the best that can be done
for kinetic equations with diffusive scaling, dominated by an aniso-
tropic linear collision operator, such as the charge-exchange collision
operator considered in this paper.

D. Hydrodynamic scaling Hilbert expansion

In this section, we derive a Hilbert expansion based fluid model in
the so-called hydrodynamic scaling. As all the steps are analogous to
those for the diffusive scaling, we will be brief here. First, we introduce
the hydrodynamic scaling. There is only one physical assumption:

• Collisions dominate the kinetic equation. This assumption is
introduced in the kinetic equation by stating that the collision

rate Rcxðx; tÞ � Oð1=eÞ, and setting all other quantities �Oð1Þ.
We introduce the scaled collision rate: ~Rcxðx; tÞ ¼ eRcxðx; tÞ.

With this scaling, the mean free path of the particles goes to zero
in the limit e! 0, as the mean free path k � v=Rcxðx; tÞ � OðeÞ.
Inserting the hydrodynamic scaling into the kinetic conservation equa-
tion (5b) and multiplying by e results in

e@t f ðx; v; tÞ þ ev@xf ðx; v; tÞ

¼ ~Rcxðx; tÞ � Mðvjx; tÞ
ð
f ðx; v0; tÞdv0 � f ðx; v; tÞ

� �
: (32)

We insert a Hilbert expansion (10) in the scaled kinetic equation (32)
and write equations per order in e:

e0 : 0 ¼ ~Rcxðx; tÞ Mðvjx; tÞ
ð
f0ðx; v0; tÞdv0 � f0ðx; v; tÞ

� �
;

e1 : @t f0ðx; v; tÞ þ v@x f0ðx; v; tÞð Þ

¼ ~Rcxðx; tÞ Mðvjx; tÞ
ð
f1ðx; v0; tÞdv0 � f1ðx; v; tÞ

� �
;

..

.

ek : @t fk�1ðx; v; tÞ þ v@x fk�1ðx; v; tÞð Þ

¼ ~Rcxðx; tÞ Mðvjx; tÞ
ð
fkðx; v0; tÞdv0 � fkðx; v; tÞ

� �
:

(33)

We first solve the e0-equation. Again defining the whole particle den-
sity to be in the equilibrium function: qðx; tÞ :¼

Ð
f0ðx; v; tÞdv, the

equilibrium follows from a straightforward manipulation:

f0ðx; v; tÞ ¼ qðx; tÞMðvjx; tÞ: (34)

The first order perturbation is obtained by inserting (34) for
f0ðx; v; tÞ in the e1-equation:

@tðqðx; tÞMðvjx; tÞÞ þ v@x qðx; tÞMðvjx; tÞð Þ

¼ ~Rcxðx; tÞ Mðvjx; tÞ
ð
f1ðx; v0; tÞdv0 � f1ðx; v; tÞ

� �
: (35)

The solvability condition (16) for this inhomogeneous integral equa-
tion results in the following constraint:ð

@tðqðx; tÞMðvjx; tÞÞ þ v@x qðx; tÞMðvjx; tÞð Þdv ¼ 0

) @tðqðx; tÞÞ þ @xðupðx; tÞqðx; tÞÞ ¼ 0: (36)

The solvability condition is the conservation of particles in the equilib-
rium part f0ðx; v; tÞ of the Hilbert expansion, where advection hap-
pens with the mean velocity upðx; tÞ of the Maxwellian describing the
background plasma. This is an evolution equation, and since we only
have one degree of freedom in the equilibrium, the particle density
qðx; tÞ, this evolution equation constitutes a closed fluid model for
the hydrodynamic scaling Hilbert expansion of the conservation equa-
tion (5b).

Since the whole particle density is in the equilibrium, we again
have

Ð
fkðx; v; tÞdv � 0; 8k > 0, resulting in the following expression

for the first order perturbation:
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f1ðx; v; tÞ ¼ �
1

~Rcxðx; tÞ
ð@tðf0ðx; v; tÞÞ þ v@xðf0ðx; v; tÞÞÞ

¼ � 1
eRcxðx; tÞ

ð@tðqðx; tÞMðvjx; tÞÞ

þv@xðqðx; tÞMðvjx; tÞÞÞ: (37)

We cannot go beyond a first order Hilbert expansion as higher
order solvability conditions result in evolution equations that are
incompatible with Eq. (36).

Remark 4: In the long time limit with t � Oð1=eÞ, the hydrody-
namic evolution equation (36) will reach an equilibrium. Inserting this
time scaling into the hydrodynamic scaling kinetic equation results in
the so-called steady-state scaling.49

1. Momentum and energy density

The first order perturbation contains no particle density, but it
does contain momentum and energy. These quantities can be calcu-
lated based on the first and second moment of ef1ðx; v; tÞ, where
f1ðx; v; tÞ is given by Eq. (37):

m1ðx; tÞ :¼
ð

evf1ðx; v; tÞdv

¼ � 1
Rcxðx; tÞ

ð@tðupðx; tÞqðx; tÞÞ

þ @x upðx; tÞ2 þ r2
pðx; tÞ

� 	
qðx; tÞ

� 		
; (38)

E1ðx; tÞ :¼
ð

e
v2

2
f1ðx; v; tÞdv

¼ � 1
2

1
Rcxðx; tÞ

�
@t upðx; tÞ2 þ r2

pðx; tÞ
� 	

qðx; tÞ
� 	

þ@x upðx; tÞ3 þ 3upðx; tÞr2
pðx; tÞ

� 	
qðx; tÞ

� 		
: (39)

Note that these perturbations decrease in magnitude for e! 0. Also
note that the expressions seemingly contain the Euler momentum and
energy conservation equations, which might give the impression that
the first order perturbation does not contain any momentum or
energy. This is, however, not the case as momentum and energy con-
servation are incompatible with the evolution equation (36) for known
upðx; tÞ and r2

pðx; tÞ. The physical reason why there is no conservation
of momentum and energy within the population of the neutral par-
ticles is that these quantities are exchanged with the plasma back-
ground (see Appendix C).

To obtain the full expressions for the momentum and energy
density of the hydrodynamic scaling Hilbert expansion, the first order
perturbation contributions should be added to the equilibrium contri-
butions. The equilibrium contributions are the same as for the diffu-
sive scaling, see Eqs. (30) and (31).

2. Error estimate

Solvability conditions for higher order perturbations fkðx; v; tÞ
with k � 2 lead to incompatible evolution equations for the particle
density qðx; tÞ. This means that a first order hydrodynamic scaling
Hilbert expansion f ðx; v; tÞ � f0ðx; v; tÞ þ ef1ðx; v; tÞ is the best that
can be done. Under the made assumptions, we conclude that the error
will be of orderOðe2Þ.

IV. FLUID MODEL IMPLEMENTATION

In Secs. II and III, the kinetic equation describing neutral particle
behavior (1) has been split in a source, conservation, and ionization
equation (5a)–(5c). The fluid model equivalents for the source and
ionization equation are given by Eqs. (8) and (9), respectively. For the
conservation equation, Hilbert expansion based fluid models are
derived in the diffusive scaling (28), (30), and (31) and in the hydrody-
namic scaling (36), (38), and (39). Recall that Eqs. (38) and (39) only
contain the perturbation contributions. Obtaining the full momentum
and energy expressions requires adding the equilibrium parts of Eqs.
(30) and (31), respectively.

This section deals with solving the resulting transient fluid mod-
els using a time stepping procedure. First, the different equations are
discretized for the numerical experiments in Sec. V. Next, the estima-
tion of macroscopic QoIs is discussed for the fluid models, a discrete
velocity model, and a particle tracing Monte Carlo method, the last
two being reference solvers used for the numerical experiments in Sec.
V. Finally, the algorithmic solution procedures for the fluid models
and reference solvers are described.

A. Discretization of the fluid models

Implementing the fluid model equivalents of the split equations
(5a)–(5c) requires choosing a discretization for the different equations.
There are no spatial derivatives in the source and ionization equation.
Their solution, as provided in Sec. II, is readily implemented. For the
conservation equation, there are spatial dependencies that have to be
discretized.

The two Hilbert expansion based fluid models (diffusive and
hydrodynamic scaling) can be written in the following form:

@tqðx; tÞ|fflfflfflffl{zfflfflfflffl}
transient

þ @xðupðx; tÞqðx; tÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
advection

� @xðDðx; tÞ@xðr2
pðx; tÞqðx; tÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

¼ 0; (40)

with Dðx; tÞ ¼ 1
Rcxðx;tÞ in the diffusive scaling (28) and Dðx; tÞ ¼ 0 in

the hydrodynamic scaling (36). The two fluid models can therefore be
modeled using the same simulation code by only changing the diffu-
sion coefficientD(x, t).

The equation is semi-discretized using a finite volume scheme on
a grid with uniform spacing Dx. Cell centers are located at the posi-
tions xj, j ¼ 1;…; J , where J is the total number of grid cells. The
advection term is discretized using a first order upwind scheme, the
diffusion term using a second order centered discretization.
Boundaries are treated periodically. The semi-discretized equation can
be written in condensed form:

@tqðxj; tÞ þ Uðxj; tÞ ¼ 0; (41)

where Uðxj; tÞ represents the spatially discretized advection and diffu-
sion terms at position xj. The time discretization is done using explicit
Euler with time step Dt:

qðxj; ti þ DtÞ � qðxj; tiÞ � DtUðxj; tiÞ: (42)

At each time in the simulation, the momentum and energy den-
sity of the Hilbert expansion based fluid models can be calculated by
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discretizing the formulas discussed in Secs. III C 1 and IIID1, using
the same discretization schemes as for the evolution equation (40).
Other QoIs can be treated analogously.

B. Estimation of macroscopic quantities of interest

Transient simulations run from an initial time t¼ 0 up to a given
time t1 at which the QoIs are to be computed. The QoIs at time t1 can
be obtained from a Hilbert expansion based fluid model simulation in
a straightforward way by inserting the Hilbert expansion (10) in the
velocity integrals (3) defining the QoIs.

In the numerical experiments in Sec. V, the Hilbert expansion
based fluid models are compared to a discrete velocity model40 and a
particle tracing Monte Carlo method.4,41,45 Therefore, the QoIs also
have to be computed by these two reference solvers. For discrete veloc-
ity models, calculating QoIs is a straightforward process, as an approx-
imation to the particle velocity distribution f ðx; v; tÞ is readily
available. For particle tracing Monte Carlo methods, obtaining an
accurate solution at a fixed point in time requires an extremely large
number of particles because of two reasons. First, a fraction of the ini-
tialized particles does not reach the time t1 due to ionization processes
(and in a more general setting other potential particle sinks such as
absorption at a boundary). Second, the particles that survive up to
time t1 only contribute once to the estimates of the QoIs. These two
effects combined result in a high variance on the Monte Carlo esti-
mates of the QoIs.

To obtain good reference solutions at a reasonable computational
cost, we reduce the variance on the Monte Carlo estimation by not
asking for the QoIs at a given point t1 in time, but by asking for the
average QoIs over a time windowW: t 2W ¼ ½t1; t2:

�QðxjÞ ¼
1

DW

ðt2
t1

ð
V
qðvÞf ðxj; v; tÞdvdt; (43)

where DW ¼ t2 � t1 represents the width of the time window. In a
particle tracing Monte Carlo method, this type of integral is a standard
output that can be estimated using a time-integrated estimator over
W, e.g., using an analog or track-length estimator.4,41 In time-
integrated estimators, the different particles contribute multiple times
to the estimates of the QoIs during the time window W, reducing the
variance on the results.

For the fluid solvers and the discrete velocity model, the solution
can also be integrated over the time window W and divided by DW to
obtain the average solution over the time window. Assuming that the
calculated QoIs are constant in each time step Dt of the simulation
and choosing Dt such that DW ¼ NDt with N 2N, the averaged
QoIs can be approximated as

�QðxjÞ �
1

DW

XN
n¼1

DtQnðxjÞ; (44)

where QnðxjÞ represents the QoIs in time step n and is calculated by
evaluating the corresponding velocity integrals (3) in that time step.

C. Solution procedure

Simulating the Hilbert expansion based fluid models requires
solving the fluid model equivalents of the split equations (5a)–(5c)
sequentially in each time step. For the employed first order splitting,

the order in which the equations are solved is not important. We first
solve the source equation, then the Hilbert expansion based conserva-
tion equation, and finally the ionization equation, following the natural
path of neutral particles from source to sink, as is done in particle trac-
ing Monte Carlo methods.4,41,45 The source equation (5a) only has to
be solved for the particle density qðx; tÞ. After solving the source equa-
tion, the particle density is evolved using the Hilbert expansion based
conservation equation. Next, the QoIs are calculated by inserting the
Hilbert expansion ansatz in the velocity integrals (3). Finally, the ioni-
zation equation is solved in which a fraction of the QoIs is lost in the
ionization sink.

Hilbert expansion based fluid model simulations start with the
construction of the initial condition. Then, a time stepping procedure
with a time step Dt is executed up to time t1: the beginning of the esti-
mation time window. Next, the simulation is continued until time t2
while counting contributions to the QoIs, averaged over the estimation
time window W. The pseudo-code is given in Algorithm 1 in
Appendix A.

We also briefly outline the solution procedure for the two refer-
ence solvers used in Sec. V. Discrete velocity models directly discretize
the kinetic equation on a x, v-grid in phase space. The same equidis-
tant space and time discretizations as used for the fluid models are
employed. The velocity is discretized using Gauss–Hermite points,50

based on a Maxwellian with mean velocity 1
J

PJ
j¼1 upðxj; t ¼ 0Þ and

variance 1
J

PJ
j¼1 r2

pðxj; t ¼ 0Þ. For more details on discrete velocity
models, we refer the reader to Ref. 40. Transient particle tracing
Monte Carlo methods45,51 simulate particle trajectories in phase space.
To count contributions to the QoIs, the same finite volume x-grid as
used for the fluid models can be used to build a histogram. In the
experiments, a stationary source Sðx; v; tÞ ¼ Sðx; vÞ will be assumed,
allowing for the introduction of particles in the simulation by sampling
the generation time t� of each particle from a uniform distribution
over the time interval ½0; t2. There is no need to sample times beyond
t2 as those particles will never contribute to the estimators. Each parti-
cle is tracked from time t� to the end of the estimation time window t2
or until it is lost in a sink. Pseudo-code for such a particle tracing
Monte Carlo method is given in Algorithm 2 in Appendix A.

V. NUMERICAL EXPERIMENTS

In this section, we test the performance of the two Hilbert expan-
sion based fluid models in three numerical experiments. In the first
experiment, we set up a test case in the hydrodynamic scaling and in
the diffusive scaling, applying the two Hilbert expansion based fluid
models to each test case. The second experiment compares the diffu-
sive scaling Hilbert expansion based fluid model to a phenomenologi-
cal pressure-diffusion model,3,6 which is derived based on a variant of
the Method of Moments combined with physical intuition based
assumptions. In the third experiment, the two Hilbert expansion based
fluid models are applied to a test case with parameter values in the
realistic ranges for fusion reactor plasma edge modeling. The test case
comprises a fictitious gas puffing event in the plasma edge, where the
injected neutral particles instantaneously equilibrate with the back-
ground plasma.

For each test case, a reference solution is computed using a parti-
cle tracing Monte Carlo method with analog simulation and track-
length estimation,4,41 and using a discrete velocity model with 200
Gauss-Hermite points to discretize the velocity. The Monte Carlo
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method is seeded to ensure reproducibility of the results. More details
on the reference solutions can be found in Appendix D. Each experi-
ment is performed in the domain x 2 ½0; 1, which is subdivided uni-
formly in 200 finite volume grid cells.

The two Hilbert expansion based fluid models use the same time
step within a given experiment. The time step restriction in the hydro-
dynamic scaling experiments is due to the advection CFL number

CFLadv ¼
maxðupÞDt

Dx
; (45)

and in the diffusive scaling experiments due to the (more restrictive)
diffusive CFL number

CFLdiff ¼
1
2

max
r2
p

Rcx

 !
Dt

Dx2
: (46)

For each experiment, the time step is chosen such that a CFL number
equal to 0.5 is obtained. The CFL numbers are independent of e for
their respective scalings, which means that the same number of time
steps is required to reach a chosen time t1, no matter the value of e. As
a result, the cost for solving the fluid models is independent of e. This
is in contrast to the particle tracing Monte Carlo methods, where the
cost increases dramatically for e! 0 (high-collisional regime), as each
collision is executed explicitly. The Hilbert expansion based fluid mod-
els therefore provide an enormous speed-up over particle tracing
Monte Carlo methods in high-collisional regimes. We refer to
Appendix A for an additional remark on the cost as a function of the
grid refinement. The code used to perform the experiments is openly
available in a Zenodo repository.42

A. Experiment 1: Diffusive scaling vs hydrodynamic
scaling

1. Setup

In the first experiment, we test the two Hilbert expansion based fluid
models in a hydrodynamic scaling and in a diffusive scaling test case. All
the parameter profiles are chosen sinusoidal such that they are smooth
and periodic. We simulate starting from the following initial condition:

qðx; t ¼ 0Þ ¼ 1þ 1
2p

sin ð2pxÞ: (47)

The estimation time window starts at the initial time: t1 ¼ 0. The estima-
tion time window has a width of 10 time steps for the hydrodynamic
scaling test case and 5000 time steps for the diffusive scaling test case,
respectively, such that the simulated time for both test cases is about
DW � 0:025. The source is set to zero: Sðx; v; tÞ � 0. The collision rates
Riðx; tÞ; Rcxðx; tÞ and background plasma quantities upðx; tÞ; r2

pðx; tÞ
are chosen to be stationary functions. The model parameter profiles for
the hydrodynamic scaling test case are the following:

RiðxÞ ¼ 0;

RcxðxÞ ¼ 10a 1þ 1
4p

sin ð4pxÞ
� �

;

upðxÞ ¼ 1þ 1
6p

sin ð6pxÞ;

r2
pðxÞ ¼ 1þ 1

6p
cos ð6pxÞ;

(48)

where a allows to tune the value of e, as we can interpret e ¼ 10�a.
For the diffusive scaling test case, all the functions are kept the same,
with the exception of the variance r2

pðxÞ, which becomes

r2
pðxÞ ¼ 10a 1þ 1

6p
cos ð6pxÞ

� �
: (49)

In the diffusive scaling, we can interpret e2 ¼ 10�a. For both test cases,
we can set e! 0 by increasing the value of a.

The model parameter profiles are chosen such that they corre-
spond either to the hydrodynamic scaling or to the diffusive scaling.
However, both the Hilbert expansion based fluid models can be
applied to each of the test cases. The hydrodynamic scaling fluid
model assumes that e � 1

Rcx
� 10�a, which is correct in the hydrody-

namic scaling test case, but not in the diffusive scaling test case. The
diffusive scaling fluid model assumes that e2 � 1

Rcx
; 1
r2
p
� 10�a, which

is correct in the diffusive scaling test case, but not in the hydrodynamic
scaling test case. Applying the correct Hilbert expansion based fluid
model to a test case allows to assess its performance. Applying the
wrong Hilbert expansion based fluid model to a test case allows to
assess the influence of using a wrong scaling.

2. Results

We are interested in the accuracy of the Hilbert expansion based
fluid models for e! 0, i.e., for increasing a. We perform the simula-
tions for a ¼ 0; 1; …; 5 and calculate the relative errors with respect
to the reference solution

relative error ¼ 1
J

XJ
j¼1





 �QðxjÞ � �Qref ðxjÞ
�Qref ðxjÞ





 (50)

for the particle, momentum, and energy density. The hydrody-
namic scaling test case uses the discrete velocity model solution as
reference solution, while the diffusive scaling test case uses the par-
ticle tracing Monte Carlo solution as reference solution, as
explained in Appendix D.

Figure 1 shows that for both the hydrodynamic scaling and diffu-
sive scaling test case, the correctly scaled fluid models converge toward
the reference solutions for increasing a, i.e., for e! 0. However, the
predicted convergence rates (Secs. IIIC 2 and IIID2) are not achieved.
This seems to indicate that for low values of a, the fluid models are not
yet in the asymptotic regime. For high values of a, where calculating
the reference solutions becomes increasingly expensive, the statistical
and discretization errors quickly become dominant over the modeling
error. This prevents a proper illustration of the asymptotic behavior of
the modeling error. Nevertheless, Fig. 1 clearly shows that the model-
ing error decreases rapidly in the correct asymptotic limit.

Looking at the diffusive scaling test case [Fig. 1(a)], the difference
between the two Hilbert expansion based fluid models is obvious. The
hydrodynamic scaling fluid model has no information on the variance
r2
pðxÞ being high and therefore does not exhibit the diffusive behavior

induced by this high variance. For increasing a, the diffusive scaling
fluid model converges toward the reference solution (apart from the
introduced discretization and statistical errors), while this is not the
case for the hydrodynamic scaling fluid model.

Looking at the hydrodynamic scaling test case [Fig. 1(b)], we see
that for a ¼ f0; 1g, the forward Euler discretization of the diffusive
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scaling fluid model is unstable, resulting in the observed large errors.
For larger values of a, the diffusive scaling fluid model is stable and
converges to the performance of the hydrodynamic scaling fluid
model. The stagnation of the errors for high values of a is due to the
discretization errors becoming dominant.

The discrepancies between the two fluid models and the two ref-
erence solutions are still visible for a¼ 3 (e2 ¼ 10�3) in the diffusive
scaling test case and a¼ 2 (e ¼ 10�2) in the hydrodynamic scaling
test case, as shown in Fig. 2. In the diffusive scaling test case [Fig. 2(a)],
the lack of diffusion in the hydrodynamic scaling fluid model is clearly
visible. In the hydrodynamic scaling test case [Fig. 2(b)], the diffusive
scaling fluid model is only slightly outperformed by the hydrodynamic
scaling fluid model. This can be explained by noting that in Eq. (28),
the diffusion term becomes negligible for a low variance r2

pðxÞ

combined with an increasing collision rate RcxðxÞ, leading to (36) in
the high-collisional limit.

The conclusions of this first experiment are (i) that the modeling
errors decrease rapidly when a Hilbert expansion based fluid model is
applied to a problem that has the correct scaling and (ii) that the diffu-
sive scaling model reduces to the hydrodynamic scaled problem if the
variance r2

pðxÞ is low. The stability condition of the diffusive scaling
model, however, is more restrictive than the one of the hydrodynamic
scaling model.

B. Experiment 2: Comparison with phenomenological
pressure-diffusion model

In the second experiment, we compare the diffusive scaling
Hilbert expansion based fluid model with the phenomenological
pressure-diffusion model described in Refs. 3 and 6. The pressure-
diffusion model is derived by using a variant of the Method of
Moments, where closure is achieved by assuming that the temperature
of the neutral particles equals the temperature of the background
plasma, resulting in the constraint r2ðxÞ ¼ r2

pðxÞ. The resulting fluid
equations are Navier–Stokes like and are reduced to a pressure-
diffusion model by neglecting several terms in the Navier–Stokes like
fluid model based on physical intuition.

We reuse the diffusive scaling test case from experiment 1. In the
absence of sources and sinks, only the conservation equation (5b) is
solved in the Hilbert expansion based fluid model. Setting the sources
and sinks to zero in the pressure-diffusion model reduces that model’s
pressure-diffusion equation to the evolution equation (28) of the diffu-
sive scaling Hilbert expansion. The momentum equation of the
pressure-diffusion model corresponds to Eq. (30). The remaining dif-
ference between the two models is the difference between their energy
equations. The energy density in the pressure-diffusion model follows
from the calculated momentum (30) and the assumption
r2ðxÞ ¼ r2

pðxÞ:

Eðx; tÞ ¼ 1
2

mðx; tÞ2

qðx; tÞ þ qðx; tÞr2
pðxÞ

 !
: (51)

The Hilbert expansion based fluid model has energy density (31)
from which a r2ðxÞ 6¼ r2

pðxÞ can be derived using the definitions
below Eq. (4).

The description of the similarities and differences between the
two models already shows that phenomenological fluid models incor-
porating expert knowledge, such as the pressure-diffusion model, can
come very close to models that follow from more systematic deriva-
tions, as is the case for the Hilbert expansion based fluid model. The
comparison between the two models is shown in Fig. 3. The relative
errors of the phenomenological pressure-diffusion model and diffusive
scaling Hilbert expansion based fluid model as a function of a are
shown in Fig. 3(a). The relative errors on the particle density qðx; tÞ
andmomentum densitym(x, t) coincide, because the two models solve
the same equations. For the energy density E(x, t), we see that the rela-
tive errors are different, but very close to each other. Figures 3(c) and
3(d), respectively, show the momentum density and energy density for
a¼ 2 (e2 ¼ 10�2). For that value of a, the difference in the energy den-
sity for the two models is still clearly visible.

For a< 3, the phenomenological pressure-diffusion model
slightly outperforms the Hilbert expansion based fluid model, which is

FIG. 1. Relative errors of the diffusive (e2 ¼ 10�a) and hydrodynamic (e ¼ 10�a)
scaling Hilbert expansion based fluid models as a function of a. Full lines: error on
the averaged particle density �q. Dashed lines: error on the averaged momentum
density �m. Dash-dotted lines: error on the averaged energy density �E.
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also visible in Fig. 3. The phenomenological pressure-diffusion model
turns out to be the Hilbert expansion based fluid model, but with an
adapted approximation f ðx; v; tÞ � f �0 ðx; v; tÞ for calculating the
energy, where f �0 ðx; v; tÞ is a drifting Maxwellian with mean uðxÞ
6¼ upðxÞ and variance r2ðxÞ ¼ r2

pðxÞ. The superior accuracy can then

be explained by the fact that a Hilbert expansion’s perturbation contri-
bution ef1ðx; v; tÞ to a QoI (to the energy density) is less accurate for
small values of a than for large values of a. Far away from the asymp-
totic limit e! 0 (for low a values), a lower order approximation (a
drifting Maxwellian) is more robust than a higher order

FIG. 2. Particle tracing Monte Carlo, Hilbert expansion based fluid models, and discrete velocity model (DVM) solutions. Left to right: averaged particle, momentum, and energy
density.
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approximation (a drifting Maxwellian with first order perturbation).
Note, however, that for the momentum density, the perturbation con-
tribution ef1ðx; v; tÞ and the equilibrium contribution f0ðx; v; tÞ are
equally important (see Sec. IIIC 1), and therefore, the perturbation
contribution cannot be neglected in order to obtain a better approxi-
mation. The insight that lower order approximations are more robust
(provided that the perturbation and equilibrium are not equally
important for the QoI under consideration) can readily be incorpo-
rated in the deployment of Hilbert expansion based fluid models.

To verify this insight, Fig. 3(b) shows the relative errors for the
zeroth order diffusive scaling Hilbert expansion based fluid model,
which uses f ðx; v; tÞ � f0ðx; v; tÞ as lower order approximation for the
particle velocity distribution. The momentum density and energy den-
sity of this fluid model are plotted in Figs. 3(c) and 3(d), respectively.
As expected, the error on the momentum density does not decrease
anymore for increasing a, because the perturbation contribution and
the equilibrium contribution of the first order Hilbert expansion are of

equal importance for the momentum density. For the energy density,
it is observed that the error still decreases for increasing a, because the
perturbation contribution becomes negligible in the asymptotic limit,
i.e., using f ðx; v; tÞ � f0ðx; v; tÞ is asymptotically consistent for the
energy density. Additionally, the accuracy has improved for low a val-
ues (a< 3), making the lower order approximation a better, more
robust alternative to the first order Hilbert expansion.

Even though the accuracy of the phenomenological pressure-
diffusion fluid model and the Hilbert expansion based fluid models
is very similar, there are two additional advantages of using the
systematic Hilbert expansion based approach. The first advantage
is that the Hilbert expansion based approach introduces physical
assumptions simply by scaling model parameters at the kinetic
description level, while in the phenomenological pressure-
diffusion model, the assumptions are introduced in a more ad hoc
way at the fluid description level by neglecting terms and adding
constraints. As a result, the scalings introduced by the Hilbert

FIG. 3. First and zeroth order diffusive scaling Hilbert expansion based fluid model (e2 ¼ 10�a) vs phenomenological pressure-diffusion fluid model of Refs. 3 and 6. Top row:
relative errors as a function of a; full lines: error on the averaged particle density �q; dashed lines: error on the averaged momentum density �m; dash-dotted lines: error on the
averaged energy density �E. Bottom row: averaged momentum and energy density for a¼ 2.
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expansion based approach give a clear view on the range of validity
of the resulting fluid models, as the required relative magnitude of
the different model parameters is made explicit.

The second advantage is that the Hilbert expansion based
approach provides direct access to the approximate particle velocity
distribution underlying the resulting fluid model, while that is not the
case for the pressure-diffusion model. The reason for this is that in the
Hilbert expansion based approach, the assumptions are already intro-
duced at the kinetic description level, which elucidates their influence
on the particle velocity distribution during the derivation of the fluid
equations. In a phenomenological fluid model, assumptions are made
at the fluid description level, leaving their effect on the particle velocity
distribution unclear.

C. Experiment 3: Realistic application case

In the final experiment, we set the model parameters such that
they correspond to realistic plasma edge values for a pure hydrogen
plasma in a tokamak. The experiment consists of modeling a fictitious
gas puffing event in a plasma representative for cold, dense divertor
conditions.52 For this experiment, the parameters and variables are
assigned units given in Table I.

The initial condition for the neutral particle density is set to zero:
qðx; t ¼ 0Þ � 0 and a stationary source S(x, v) is provided. The source
has two contributions: (i) a fictitious gas puff that injects instanta-
neously relaxing neutral particles in the plasma edge; (ii) the plasma
recombination source. This results in the following expression for the
source:

Sðx; vÞ ¼
qgðxÞ þ qrðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
pðxÞ

q exp � 1
2

ðv � upðxÞÞ2

r2
pðxÞ

 !
; (52)

where qgðxÞ and qrðxÞ determine the spatial distribution of the gas
puff source and the recombination source, respectively. For the gas
puff, the spatial distribution is chosen as follows:

qgðxÞ ¼ 1021 � exp � 1
2
ðx � 0:5Þ2

0:12

� �
: (53)

The spatial distribution of the recombination source qrðxÞ, as well as
the collision rates RcxðxÞ; RiðxÞ, follow from relations taken from Ref.
6. These relations require the electron temperature, ion temperature,
and ion density as inputs. For the temperatures, we take a profile that
reaches 10 eV at the domain boundaries and equals 1 eV at the center
of the domain:

TiðxÞ ¼ TeðxÞ ¼ 5:5þ 4:5� cos ð2pxÞ: (54)

The ion density is taken constant: qiðxÞ ¼ 1021. The mean
plasma velocity equals 10% of the sound speed: upðxÞ ¼ 0:1

�
ffiffiffiffiffiffiffiffiffiffiffi
r2
pðxÞ

q
, where the variance on the plasma velocity r2

pðxÞ follows
from

r2
pðxÞ ¼

eTiðxÞ
mp

: (55)

The total source strength �SðxÞ ¼ qgðxÞ þ qrðxÞ and the collision rates
RiðxÞ; RcxðxÞ are plotted in Fig. 4.

We perform a simulation using the transient fluid models derived
in this paper inserting the two Hilbert expansion based fluid models
and the phenomenological pressure-diffusion fluid model of Refs. 3
and 6. for the conservation equation, and the particle tracing Monte
Carlo reference solver using P ¼ 105 particles. The estimation time
window starts at time t1 ¼ 0:001 and has a width of 1000 fluid solver
time steps: DW ¼ 1000Dt. Because of the high variance on the plasma
velocity (r2

p � Oð108Þ), this test case is closer to the diffusive scaling
(with e2 � 10�8) than to the hydrodynamic scaling, so the diffusive
CFL number (46) is used to determine the time step used by the tran-
sient fluid models.

The simulation results are shown in Fig. 5. The solution of the
transient fluid models using the diffusive scaling Hilbert expansion
based fluid model and the phenomenological pressure-diffusion model
is indistinguishable by eye (the maximum relative difference between
their energy densities is smaller than 10�3). Therefore, only the lines
for the diffusive scaling Hilbert expansion based fluid model are plot-
ted. The QoIs are peaked around the center of the domain, because
there the ionization sink is the weakest and the source is the strongest.
The figure shows that the Hilbert expansion based fluid models,
together with the employed splitting to treat the source and sink, are
able to capture the QoIs in a satisfactory way. The diffusive scaling
fluid model slightly outperforms the hydrodynamic scaling one,
because the parameters are closer to the diffusive scaling assumptions.
At first, it might seem surprising that the hydrodynamic scaling fluid
model performs well, given that the test case is close to a diffusive scal-
ing. The main cause of its accuracy is the relative importance of the
source and ionization sink with respect to the conservative processes
in this test case.

VI. CONCLUSION

In this work, two Hilbert expansion based fluid models are
derived for describing neutral particle behavior in the bulk of the
plasma edge in high-collisional regimes. The first step in the derivation
of these fluid models is splitting the governing kinetic equation in a
source, conservation, and sink equation. Taking moments of the

TABLE I. Units of the parameters and variables used in the realistic application
case. The value of the electronvolt is approximately e � 1:60� 10�19. The plasma
particle mass for a hydrogen plasma is approximately mp � 1:67� 10�27.

Parameter/Variable Symbol Units

Time t s
Position x m
Velocity v, up m s�1

Plasma velocity variance r2
p ðms�1Þ2

Temperature Ti, Te eV
Electronvolt e J eV�1 ¼ kg ðms�1Þ2eV�1
Plasma particle mass mp kg
Collision rate Ri, Rcx s�1

Particle velocity distribution f ðms�1Þ�1m�3
Particle source S ðms�1Þ�1m�3s�1
Particle density q, qg, qr m�3

Momentum density m ðms�1Þm�3
Energy density E ðms�1Þ2m�3
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source and sink equations is straightforward and leads to closed fluid
equations. Taking moments of the conservation equation, however,
would lead to an infinite chain of fluid equations. This problem is
avoided by performing an asymptotic analysis around the equilibrium

state of the kinetic equation using Hilbert expansions. The Hilbert
expansions introduce physical assumptions at the kinetic description
level in a clear and systematic way, elucidating the accuracy and range
of validity of the resulting fluid models. Additionally, the Hilbert

FIG. 4. Total source strength �SðxÞ and collision rates RcxðxÞ; RiðxÞ as a function of x for the fictitious gas puff experiment.

FIG. 5. Averaged particle, momentum, and energy density of the fictitious gas puff experiment calculated using particle tracing Monte Carlo and the two Hilbert expansion
based fluid models.
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expansion based fluid models provide an approximation to the particle
velocity distribution that is consistent with the introduced physical
approximations and can be used to compute velocity dependent QoIs.

The numerical experiments show that the Hilbert expansion
based fluid models perform well in high-collisional regimes when
imposing periodic boundary conditions, i.e., when focusing on the
bulk of the plasma edge, away from the influence of any boundary
effects. A comparison with a phenomenological fluid model indicates
that the Hilbert expansion based fluid model performance far from
the asymptotic limit can be improved by neglecting the perturbation
contribution to a quantity of interest, provided that the perturbation
contribution becomes negligible in the asymptotic limit.

In future work, the treatment of realistic boundary conditions of
partial reflection type3,6 will be elaborated. Ongoing research also focuses
on simulation methods that are not only valid in the high-collisional
regime, but over a wide range of collisionalities. The fluid models, which
are accurate and computationally cheap in the high-collisional limit, are
then combined with particle tracing Monte Carlo methods, which are
accurate and computationally feasible in low-collisional regimes, in a
hybrid fluid/Monte Carlo simulation strategy.36–39
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APPENDIX A: PSEUDO-CODE

The pseudo-code for the transient Hilbert expansion based fluid
model simulation (Algorithm 1) and the transient particle tracing
Monte Carlo simulation with stationary source (Algorithm 2).

Remark 5: Note that both algorithms become more expensive
for finer grids. In the fluid models, the CFL conditions (45) and
(46) become more restrictive with increasing grid refinement (this
is also the case for the discrete velocity model). In the particle trac-
ing Monte Carlo method, there are two types of events:4 collision
events and grid cell crossing (gcc) events. The amount of collision
events grows with increasing collisionality. The amount of gcc
events grows with increasing grid refinement.

APPENDIX B: SCALING THE PLASMA VELOCITY

In the diffusive scaling, we assume that the plasma velocity
vp � Oð1=eÞ, but the plasma velocity can take any value
�1 < vp <1. So how do we justify this scaling? As the velocity
distribution is assumed to be Maxwellian, we have that 99.994% of
the mass is located in the interval ½up64rp, with up � Oð1Þ and
rp � Oð1=eÞ. This already shows that velocities that have a larger
order of magnitude than Oð1=eÞ are highly unlikely. Furthermore,
for e! 0, the region of velocities where vp 
 1 is much larger than
the region of velocities where vp � 1 because 1=e
 1, meaning
that velocities of lower order of magnitude are also uncommon. It
follows that both orders of magnitude lower and larger than Oð1=eÞ
are unlikely, justifying our scaling vp � Oð1=eÞ.

Alternatively, we can calculate the expected speed of a plasma
particle E½jvpj as follows:

Algorithm 1. Transient Hilbert expansion based fluid model simulation with time win-
dow estimation of QoIs.

Given the initial particle density qðxj; t ¼ 0Þ on a finite volume
grid, times t1 and t2, and time step Dt.
While t � t2:

Simulation:
1. Perform one time step with the source equation (5a) for
the particle density q.

2. Perform one time step with the Hilbert expansion based
conservation equation [e.g., Eq. (28) for the diffusive
scaling].

3. Obtain QoIs from Hilbert expansion ansatz [e.g., Eqs.
(30) and (31) for respectively the momentum and energy
density in the diffusive scaling].

4. Peform one time step with the sink equation (5c) for all
the QoIs.

Estimation: If t1 � t � t2:
Add contributions to time window estimators (44).
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E jvpj
� �

¼
ð1
�1

jvpjffiffiffiffiffiffiffiffiffiffi
2pr2

p

q exp � 1
2

ðvp � upÞ2

r2
p

 !
dvp

¼ up � erf
upffiffiffiffiffiffiffi
2r2

p

q !
þ rp �

ffiffiffi
2
p

r
� exp � 1

2

u2p
r2
p

 !
; (B1)

where we used that the plasma particles have Maxwellian (2) as
velocity distribution. Equation (B1) shows that the expected speed
E½jvpj � jupj þ jrpj. With r2

p � Oð1=e2Þ and up � Oð1Þ, it then
follows that the expected speed is jvpj � Oð1=eÞ, again showing
that the scaling vp � Oð1=eÞ is justified.

APPENDIX C: EXCHANGED MOMENTUM AND ENERGY
WITH THE PLASMA BACKGROUND

If the neutral particles were in equilibrium with the plasma
background (f ðx; v; tÞ ¼ f0ðx; v; tÞ), then there would be no
exchange of momentum and energy between the two species. The
neutrals, however, are modeled as f ðx; v; tÞ � f0ðx; v; tÞ
þef1ðx; v; tÞ, where the perturbation f1ðx; v; tÞ leads to an exchange
in momentum and energy between the neutral particles and the
plasma background. The momentum mex and energy Eex that is
being exchanged with the plasma background at time t can be cal-
culated as4

mexðx;tÞ¼Rcxðx;tÞ
ð
ef1ðx;v;tÞðv�upðx;tÞÞdv

¼Rcxðx;tÞ
ð
evf1ðx;v;tÞdv;

Eexðx;tÞ¼Rcxðx;tÞ
ð
ef1ðx;v;tÞ

v2

2
�
u2pðx;tÞþr2

pðx;tÞ
2

� �
dv

¼Rcxðx;tÞ
ð
e
v2

2
f1ðx;v;tÞdv:

(C1)

If the fluid model were exact, then the total momentum and
energy, taking into account the exchange with the plasma back-
ground, would be conserved. The Hilbert expansion based fluid
models, however, have an error �Oðe2Þ on the momentum and
energy. This error is also present in the total momentum and
energy, but disappears in the limit e! 0, i.e., there is asymptotic
conservation.

APPENDIX D: STATISTICAL AND DISCRETIZATION
ERRORS

In this Appendix, we estimate the relative statistical and discre-
tization errors on the reference solutions and the Hilbert expansion
based fluid models for experiment 1 in Sec. V. The relative errors
are defined as in Eq. (50). The parameter a is defined in Sec. VA 1.

1. Statistical error on the particle tracing Monte Carlo
method

The particle tracing Monte Carlo reference solutions are calcu-
lated using P ¼ 107 particles. Table II contains the estimated rela-
tive statistical errors ei on the averaged particle density �q,
momentum density �m, and energy density �E . The reported num-
bers are the empirical relative standard deviations of 10 realizations
of the particle tracing Monte Carlo solution for a given value of a,
averaged over a ¼ 0; 1;…5. The relative statistical errors are quite
insensitive to the choice of a (they vary less than one order of mag-
nitude for a ¼ 0; 1;…5). Therefore, these averaged empirical stan-
dard deviations provide a good indication of the magnitude of the
statistical errors.

2. Discretization error on the Hilbert expansion based
fluid models

The relative discretization errors of the Hilbert expansion
based fluid models are estimated by comparing the solution on the
grid with 200 grid cells to the solution on a grid with 600 grid cells,
which serves as a reference solution. For the diffusive scaling fluid

TABLE II. Estimated relative statistical errors of the particle tracing Monte Carlo solu-
tion for the diffusive scaling and hydrodynamic scaling test case in experiment 1.

Estimated ei Diffusive scaling Hydrodynamic scaling

eq 0.0006 0.0011
em 0.0025 0.0010
eE 0.0005 0.0010

Algorithm 2. Transient particle tracing Monte Carlo simulation with stationary source
and time window estimation of QoIs.

Given the initial particle density qðxj; t ¼ 0Þ on a finite volume
grid, times t1 and t2, and the number of particles P used to construct
the estimates of the QoIs.
Initialization:
1. Calculate the normalization constant of the initial particle den-
sityMi ¼

Ð
qðx; t ¼ 0Þdx and of the source

Ms ¼ t2
Ð Ð

Sðx; vÞdxdv.
2. Set the particle weights toWp ¼ MiþMs

P .
Iterate over the particles:
For p ¼ 1…P:
Sample the particle:
Sample with probability Mi

MiþMs
the particle position from qðx; t ¼ 0Þ

and the particle velocity from the equilibrium Maxwellian (2). If the
particle is sampled from the initial condition, the initial time is set to
zero: t� ¼ 0. Sample with probability Ms

MiþMs
the particle position and

velocity from the source S(x, v). If the particle is sampled from the
source, the initial time t� is sampled uniformly in ½0; t2.

While t � t2 andWp > 0:
Simulation:

Simulate the particle trajectory starting at time t� using a parti-
cle tracing Monte Carlo simulation method of choice.4,41

Estimation: If t1 � t � t2:
Add contributions to the time window estimators (43) using a
time-integrated estimator of choice.4,41
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model in the diffusive scaling test case in experiment 1, the esti-
mated relative discretization errors are given in Table III.

The estimated relative discretization errors of the hydrody-
namic scaling fluid model in the hydrodynamic scaling test case in
experiment 1 are given in Table IV.

Note that the discretization errors on the averaged density �q are
independent of a, because the evolution equations (28) and (36) are
independent of e. The momentum density (30) of the diffusive scaling
Hilbert expansion based fluid model is also independent of e, resulting
in an a-independent discretization error. In general, however, the dis-
cretization errors on velocity dependent QoIs do depend on a.

3. Discretization error on the discrete velocity model

The relative discretization errors of the discrete velocity model
are estimated by comparing the solution on the grid with 200 grid
cells and 200 Gauss–Hermite points to a reference solution on a
grid with 600 grid cells and 600 Gauss–Hermite points. The discre-
tization error (numerical diffusion) grows with r2

pðxÞ in the diffu-
sive scaling, because the Maxwellian (2) becomes wider for larger
values of a. We therefore only use the discrete velocity model as a
reference solution in the hydrodynamic scaling test case. The esti-
mated relative discretization errors in the hydrodynamic scaling test
case in experiment 1 are given in Table V.

4. Choice of reference solution

In experiment 1 in Sec. V, the modeling error of the Hilbert
expansion based fluid models in the hydrodynamic scaling test case

quickly drops below the noise level of the particle tracing Monte
Carlo method. Therefore, we use the discrete velocity model solu-
tion as reference solution to determine the fluid model accuracy in
the hydrodynamic scaling experiment. Because the discrete velocity
model error increases with a in the diffusive scaling, we use the par-
ticle tracing Monte Carlo solution as reference solution to deter-
mine the fluid model accuracy in the diffusive scaling experiment.
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