434 research outputs found

    Neratinib is an MST1 inhibitor and restores pancreatic β-cells in diabetes

    Get PDF

    In Vivo Detection of Extrapancreatic Insulin Gene Expression in Diabetic Mice by Bioluminescence Imaging

    Get PDF
    Extrapancreatic tissues such as liver may serve as potential sources of tissue for generating insulin-producing cells. The dynamics of insulin gene promoter activity in extrapancreatic tissues may be monitored in vivo by bioluminescence-imaging (BLI) of transgenic mice Tg(RIP-luc) expressing the firefly luciferase (luc) under a rat-insulin gene promoter (RIP).The Tg(RIP-luc) mice were made diabetic by a single injection of the pancreatic beta-cell toxin streptozotocin. Control mice were treated with saline. Mice were subject to serum glucose measurement and bioluminescence imaging daily. On day eight of the treatment, mice were sacrificed and tissues harvested for quantitative luciferase activity measurement, luciferase protein cellular localization, and insulin gene expression analysis.Streptozotocin-induced diabetic Tg(RIP-luc) mice demonstrated a dramatic decline in the BLI signal intensity in the pancreas and a concomitant progressive increase in the signal intensity in the liver. An average of 5.7 fold increase in the liver signal intensity was detected in the mice that were exposed to hyperglycemia for 8 days. Ex vivo quantitative assays demonstrated a 34-fold induction of the enzyme activity in the liver of streptozotocin-treated mice compared to that of the buffer-treated controls. Luciferase-positive cells with oval-cell-like morphology were detected by immunohistochemistry in the liver samples of diabetic mice, but not in that of non-treated control transgenic mice. Gene expression analyses of liver RNA confirmed an elevated expression of insulin genes in the liver tissue exposed to hyperglycemia.BLI is a sensitive method for monitoring insulin gene expression in extrapancreatic tissues in vivo. The BLI system may be used for in vivo screening of biological events or pharmacologic activators that have the potential of stimulating the generation of extrapancreatic insulin-producing cells

    Purinergic P2X7 receptors regulate secretion of interleukin-1 receptor antagonist and beta cell function and survival

    Get PDF
    In obesity, beta cells activate compensatory mechanisms to adapt to the higher insulin demand. Interleukin-1 receptor antagonist (IL-1Ra) prevents obesity-induced hyperglycaemia and is a potent target for the treatment of diabetes, but the mechanisms of its secretion and regulation in obesity are unknown. In the present study, we hypothesise the regulation of IL-1Ra secretion by purinergic P2X7 receptors in islets. Production and regulation of P2X7 were studied in pancreatic sections from lean and obese diabetic patients, non-diabetic controls and in isolated islets. IL-1Ra, IL-1β and insulin secretion, glucose tolerance and beta cell mass were studied in P2x7 (also known as P2Rx7)-knockout mice. P2X7 levels were elevated in beta cells of obese patients, but downregulated in patients with type 2 diabetes mellitus. Elevated glucose and non-esterified fatty acids rapidly activated P2X7 and IL-1Ra secretion in human islets, and this was inhibited by P2X7 blockade. In line with our results in vitro, P2x7-knockout mice had a lower capacity to secrete IL-1Ra. They exhibited severe and rapid hyperglycaemia, glucose intolerance and impaired beta cell function in response to a high-fat/high-sucrose diet, were unable to compensate by increasing their beta cell mass in response to the diet and showed increased beta cell apoptosis. Our study shows a tight correlation of P2X7 activation, IL-1Ra secretion and regulation of beta cell mass and function. The increase in P2X7 production is one mechanism that may explain how beta cells compensate by adapting to the higher insulin demand. Disturbances within that system may result in the progression of diabetes

    Glycemic Control Promotes Pancreatic Beta-Cell Regeneration in Streptozotocin-Induced Diabetic Mice

    Get PDF
    BACKGROUND: Pancreatic beta-cells proliferate following administration of the beta-cell toxin streptozotocin. Defining the conditions that promote beta-cell proliferation could benefit patients with diabetes. We have investigated the effect of insulin treatment on pancreatic beta-cell regeneration in streptozotocin-induced diabetic mice, and, in addition, report on a new approach to quantify beta-cell regeneration in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Streptozotocin-induced diabetic were treated with either syngeneic islets transplanted under the kidney capsule or subcutaneous insulin implants. After either 60 or 120 days of insulin treatment, the islet transplant or insulin implant were removed and blood glucose levels monitored for 30 days. The results showed that both islet transplants and insulin implants restored normoglycemia in the 60 and 120 day treated animals. However, only the 120-day islet and insulin implant groups maintained euglycemia (<200 mg/dl) following discontinuation of insulin treatment. The beta-cell was significantly increased in all the 120 day insulin-treated groups (insulin implant, 0.69+/-0.23 mg; and islet transplant, 0.91+/-0.23 mg) compared non-diabetic control mice (1.54+/-0.25 mg). We also show that we can use bioluminescent imaging to monitor beta-cell regeneration in living MIP-luc transgenic mice. CONCLUSIONS/SIGNIFICANCE: The results show that insulin treatment can promote beta-cell regeneration. Moreover, the extent of restoration of beta-cell function and mass depend on the length of treatment period and overall level of glycemic control with better control being associated with improved recovery. Finally, real-time bioluminescent imaging can be used to monitor beta-cell recovery in living MIP-luc transgenic mice

    Glucose Metabolism, Islet Architecture, and Genetic Homogeneity in Imprinting of [Ca2+]i and Insulin Rhythms in Mouse Islets

    Get PDF
    We reported previously that islets isolated from individual, outbred Swiss-Webster mice displayed oscillations in intracellular calcium ([Ca2+]i) that varied little between islets of a single mouse but considerably between mice, a phenomenon we termed “islet imprinting.” We have now confirmed and extended these findings in several respects. First, imprinting occurs in both inbred (C57BL/6J) as well as outbred mouse strains (Swiss-Webster; CD1). Second, imprinting was observed in NAD(P)H oscillations, indicating a metabolic component. Further, short-term exposure to a glucose-free solution, which transiently silenced [Ca2+]i oscillations, reset the oscillatory patterns to a higher frequency. This suggests a key role for glucose metabolism in maintaining imprinting, as transiently suppressing the oscillations with diazoxide, a KATP-channel opener that blocks [Ca2+]i influx downstream of glucose metabolism, did not change the imprinted patterns. Third, imprinting was not as readily observed at the level of single beta cells, as the [Ca2+]i oscillations of single cells isolated from imprinted islets exhibited highly variable, and typically slower [Ca2+]i oscillations. Lastly, to test whether the imprinted [Ca2+]i patterns were of functional significance, a novel microchip platform was used to monitor insulin release from multiple islets in real time. Insulin release patterns correlated closely with [Ca2+]i oscillations and showed significant mouse-to-mouse differences, indicating imprinting. These results indicate that islet imprinting is a general feature of islets and is likely to be of physiological significance. While islet imprinting did not depend on the genetic background of the mice, glucose metabolism and intact islet architecture may be important for the imprinting phenomenon

    Insulin Signaling Regulates Mitochondrial Function in Pancreatic β-Cells

    Get PDF
    Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in β-cells that included glucokinase (GK), and the pro-apoptotic protein, BADS. Mitochondria isolated from β-cells derived from β-cell specific insulin receptor knockout (βIRKO) mice exhibited reduced BADS, GK and protein kinase A in the complex, and attenuated function. Similar alterations were evident in islets from patients with type 2 diabetes. Decreased mitochondrial GK activity in βIRKOs could be explained, in part, by reduced expression and altered phosphorylation of BADS. The elevated phosphorylation of p70S6K and JNK1 was likely due to compensatory increase in IGF-1 receptor expression. Re-expression of insulin receptors in βIRKO cells partially restored the stoichiometry of the complex and mitochondrial function. These data indicate that insulin signaling regulates mitochondrial function and have implications for β-cell dysfunction in type 2 diabetes

    In Vitro Proliferation of Adult Human Beta-Cells

    Get PDF
    A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1) analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide

    Single-cell delineation of lineage and genetic identity in the mouse brain

    Get PDF
    During neurogenesis, mitotic progenitor cells lining the ventricles ofthe embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia(1,2). The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level

    Excessive Food Intake, Obesity and Inflammation Process in Zucker fa/fa Rat Pancreatic Islets

    Get PDF
    Inappropriate food intake-related obesity and more importantly, visceral adiposity, are major risk factors for the onset of type 2 diabetes. Evidence is emerging that nutriment-induced β-cell dysfunction could be related to indirect induction of a state of low grade inflammation. Our aim was to study whether hyperphagia associated obesity could promote an inflammatory response in pancreatic islets leading to ß-cell dysfunction. In the hyperphagic obese insulin resistant male Zucker rat, we measured the level of circulating pro-inflammatory cytokines and estimated their production as well as the expression of their receptors in pancreatic tissue and β-cells. Our main findings concern intra-islet pro-inflammatory cytokines from fa/fa rats: IL-1β, IL-6 and TNFα expressions were increased; IL-1R1 was also over-expressed with a cellular redistribution also observed for IL-6R. To get insight into the mechanisms involved in phenotypic alterations, abArrays were used to determine the expression profile of proteins implicated in different membrane receptors signaling, apoptosis and cell cycle pathways. Despite JNK overexpression, cell viability was unaffected probably because of decreases in cleaved caspase3 as well as in SMAC/DIABLO and APP, involved in the induction and amplification of apoptosis. Concerning β-cell proliferation, decreases in important cell cycle regulators (Cyclin D1, p35) and increased expression of SMAD4 probably contribute to counteract and restrain hyperplasia in fa/fa rat islets. Finally and probably as a result of IL-1β and IL-1R1 increased expressions with sub-cellular redistribution of the receptor, islets from fa/fa rats were found more sensitive to both stimulating and inhibitory concentrations of the cytokine; this confers some physiopathological relevance to a possible autocrine regulation of β-cell function by IL-1β. These results support the hypothesis that pancreatic islets from prediabetic fa/fa rats undergo an inflammatory process. That the latter could contribute to β-cell hyperactivity/proliferation and possibly lead to progressive β-cell failure in these animals, deserves further investigations

    A GIP Receptor Agonist Exhibits β-Cell Anti-Apoptotic Actions in Rat Models of Diabetes Resulting in Improved β-Cell Function and Glycemic Control

    Get PDF
    The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured beta-cells. However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the effects of a truncated GIP analog, D-Ala(2)-GIP(1-30) (D-GIP(1-30)), on glucose homeostasis and beta-cell mass in rat models of diabetes.The insulinotropic and pro-survival potency of D-GIP(1-30) was evaluated in perfused pancreas preparations and cultured INS-1 beta-cells, respectively, and receptor selectivity evaluated using wild type and GIP receptor knockout mice. Effects of D-GIP(1-30) on beta-cell function and glucose homeostasis, in vivo, were determined using Lean Zucker rats, obese Vancouver diabetic fatty rats, streptozotocin treated rats, and obese Zucker diabetic fatty rats, with effects on beta-cell mass determined in histological studies of pancreatic tissue. Lipogenic effects of D-GIP(1-30) were evaluated on cultured 3T3-L1 adipocytes.Acutely, D-GIP(1-30) improved glucose tolerance and insulin secretion. Chronic treatment with D-GIP(1-30) reduced levels of islet pro-apoptotic proteins in Vancouver diabetic fatty rats and preserved beta-cell mass in streptozotocin treated rats and Zucker diabetic fatty rats, resulting in improved insulin responses and glycemic control in each animal model, with no change in body weight. In in vitro studies, D-GIP(1-30) exhibited equivalent potency to GIP(1-42) on beta-cell function and survival, but greatly reduced action on lipoprotein lipase activity in 3T3-L1 adipocytes.These findings demonstrate that truncated forms of GIP exhibit potent anti-diabetic actions, without pro-obesity effects, and that the C-terminus contributes to the lipogenic actions of GIP
    corecore