170 research outputs found

    Generating and measuring the anisotropic elastic behaviour of Co thin films with oriented surface nano-strings on micro-cantilevers

    Get PDF
    In this research, the elastic behaviour of two Co thin films simultaneously deposited in an off-normal angle method was studied. Towards this end, two Si micro-cantilevers were simultaneously coated using pulsed laser deposition at an oblique angle, creating a Co nano-string surface morphology with a predetermined orientation. The selected position of each micro-cantilever during the coating process created longitudinal or transverse nano-strings. The anisotropic elastic behaviour of these Co films was determined by measuring the changes that took place in the resonant frequency of each micro-cantilever after this process of creating differently oriented plasma coatings had been completed. This differential procedure allowed us to determine the difference between the Young's modulus of the different films based on the different direction of the nano-strings. This difference was determined to be, at least, the 20% of the Young's modulus of the bulk Co

    Direct measurements of magnetostrictive process in amorphous wires using scanning tunneling microscopy

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.We demonstrate a versatile capability to measure directly the magnetostrictive properties through the magnetization process on a nanometric scale using a modified scanning tunneling microscope. Single 10 mm long, 125 μm diam amorphouswires of both positive and negative magnetostriction have been studied and the data are compared with the hysteretic loops determined by both ac and SQUID magnetic measurements. This improved technique promises interesting possibilities, from both fundamental and applications points of view, in a number of scientific disciplines especially of interest in life and environmental sciences

    Structurally oriented nano-sheets in co thin films: Changing their anisotropic physical properties by thermally-induced relaxation

    Get PDF
    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures

    Production of PHB from Chicory Roots - Comparison of Three Cupriavidus necator Strains

    Get PDF
    Chicory roots from hydroponic salad cultivation are an abundant food residue in Navarra (Spain) that are underutilized to date. Aiming at a holistic utilization of resources, we report here the first process using chicory root hydrolysate for the production of poly([R]-3-hydroxybutyrate) (PHB). The polymer can be used for packaging material made for the locally produced vegetables. In the first step, we developed a pre-treatment process to obtain a hydrolysate, which contained 34 g L-1 sugars and 0.7 g L-1 total Kjeldahl nitrogen. This hydrolysate was used as fermentation substrate for three PHB-producing strains. Cupriavidus necator DSM 428 reached a dry biomass concentration of 11.3 g L-1 with a PHB content of 66 % in dry mass within 5 days. C. necator DSM 531 yielded 3.5 g L-1 dry biomass containing 46 % PHB within the same period. C. necator DSM 545 was superior over the other two in that 14.0 g L-1 of biomass containing 78 % PHB after only 3 days were obtained. These results show that even within the same species, the productivities on natural substrates are very different. The produced polymers were extracted using chloroform, and several thermo-physical parameters are in good accordance with published data. Overall, our holistic approach and the encouraging results prove that chicory roots are a viable fermentation substrate for PHB-production.This work was conducted as a part of the LEAD-ERA Project CARBIO, which was financed by the Basque Goverment and co-financed by the European Regional Development Fund (ERDF) of the European Union

    Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers

    Get PDF
    The conditions required for the emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers are assessed through an experimental approach that combines the spinning of regenerated fibers with controlled properties and their characterization by 13 C solid-state nuclear magnetic resonance (NMR). Both supercontracting and non-supercontracting regenerated fibers are produced using the straining flow spinning (SFS) technique from 13 C labeled cocoons. The short-range microstructure of the fibers is assessed through 13 C CP/MAS in air and 13 C DD/MAS in water, and the main microstructural features are identified and quantified. The mechanical properties of the regenerated fibers and their microstructures are compared with those of natural silkworm silk. The combined analysis highlights two possible key elements as responsible for the emergence of supercontraction: (1) the existence of an upper and a lower limit of the amorphous phase compatible with supercontraction, and (2) the existence of two ordered phases, ß-sheet A and B, which correspond to different packing arrangements of the protein chains

    Persistence and variation in microstructural design during the evolution of spider silk

    Get PDF
    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers

    Straining Flow Spinning of Artificial Silk Fibers: A Review

    Get PDF
    This work summarizes the main principles and some of the most significant results of straining flow spinning (SFS), a technology developed originally by the authors of this work. The principles on which the technology is based, inspired by the natural spinning system of silkworms and spiders, are presented, as well as some of the main achievements of the technique. Among these achievements, spinning under environmentally friendly conditions, obtaining high-performance fibers, and imparting the fibers with emerging properties such as supercontraction are discussed. Consequently, SFS appears as an efficient process that may represent one of the first realizations of a biomimetic technology with a significant impact at the production level.Ministerio de Economía y Competitividad MAT2016-75544-C2-1-RMinisterio de Economía y Competitividad MAT2016-79832-RMinisterio de Economía y Competitividad CPI2016-78887-C3-1-RComunidad de Madrid NEUROCENTRO-B2017Comunidad de Madrid BMD-376
    corecore