13,024 research outputs found

    Radial convection of finite ion temperature, high amplitude plasma blobs

    Get PDF
    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross-field transport in comparison with local blob simulations

    The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    Get PDF
    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the E×B\vec{E}\times\vec{B} vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the poloidal and total particle transport and present an empirical scaling law for the poloidal and total blob velocities. Distinctions to the blob behaviour in the isothermal limit with constant finite Larmor radius effects are highlighted

    Topological equivalence of crystal and quasicrystal band structures

    Get PDF
    A number of recent articles have reported the existence of topologically non-trivial states and associated end states in one-dimensional incommensurate lattice models that would usually only be expected in higher dimensions. Using an explicit construction, we here argue that the end states have precisely the same origin as their counterparts in commensurate models and that incommensurability does not in fact provide a meaningful connection to the topological classification of systems in higher dimensions. In particular, we show that it is possible to smoothly interpolate between states with commensurate and incommensurate modulation parameters without closing the band gap and without states crossing the band gap.Comment: 7 pages, 9 figures. Editors' Suggestio

    Planar Ion Trap Geometry for Microfabrication

    Full text link
    We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This ion trap geometry may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers. PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+CmComment: 14 pages, 16 figure

    Collisional transport across the magnetic field in drift-fluid models

    Get PDF
    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum and pressures in drift-fluid turbulence models and thereby obviate the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=130T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T30T\sim 30 MeV, though for higher AA-values it happens so at T20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho

    Magnetoresistence engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates

    Get PDF
    We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The wire segment can be electrically tuned to a single dot or to a double dot regime using the FSGs and a backgate. In both regimes we find a strong MR and a sharp MR switching of up to 25\% at the field at which the magnetizations of the FSGs are inverted by the external field. The sign and amplitude of the MR and the MR switching can both be tuned electrically by the FSGs. In a double dot regime close to pinch-off we find {\it two} sharp transitions in the conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic contacts, with one transition near zero and one at the FSG switching fields. These surprisingly rich characteristics we explain in several simple resonant tunneling models. For example, the TMR-like MR can be understood as a stray-field controlled transition between singlet and a triplet double dot states. Such local magnetic fields are the key elements in various proposals to engineer novel states of matter and may be used for testing electron spin-based Bell inequalities.Comment: 7 pages, 6 figure

    Very Small Strangelets

    Full text link
    We study the stability of small strangelets by employing a simple model of strange matter as a gas of non-interacting fermions confined in a bag. We solve the Dirac equation and populate the energy levels of the bag one quark at a time. Our results show that for system parameters such that strange matter is unbound in bulk, there may still exist strangelets with A<100A<100 that are stable and/or metastable. The lifetime of these strangelets may be too small to detect in current accelerator experiments, however.Comment: 13 pages, MIT CTP#217
    corecore